llvm-6502/lib/CodeGen/InlineSpiller.cpp

440 lines
15 KiB
C++
Raw Normal View History

//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "Spiller.h"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
VerifySpills("verify-spills", cl::desc("Verify after each spill/split"));
namespace {
class InlineSpiller : public Spiller {
MachineFunctionPass &pass_;
MachineFunction &mf_;
LiveIntervals &lis_;
LiveStacks &lss_;
AliasAnalysis *aa_;
VirtRegMap &vrm_;
MachineFrameInfo &mfi_;
MachineRegisterInfo &mri_;
const TargetInstrInfo &tii_;
const TargetRegisterInfo &tri_;
const BitVector reserved_;
// Variables that are valid during spill(), but used by multiple methods.
LiveRangeEdit *edit_;
const TargetRegisterClass *rc_;
int stackSlot_;
// Values that failed to remat at some point.
SmallPtrSet<VNInfo*, 8> usedValues_;
~InlineSpiller() {}
public:
InlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm)
: pass_(pass),
mf_(mf),
lis_(pass.getAnalysis<LiveIntervals>()),
lss_(pass.getAnalysis<LiveStacks>()),
aa_(&pass.getAnalysis<AliasAnalysis>()),
vrm_(vrm),
mfi_(*mf.getFrameInfo()),
mri_(mf.getRegInfo()),
tii_(*mf.getTarget().getInstrInfo()),
tri_(*mf.getTarget().getRegisterInfo()),
reserved_(tri_.getReservedRegs(mf_)) {}
void spill(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals,
const SmallVectorImpl<LiveInterval*> &spillIs);
void spill(LiveRangeEdit &);
private:
bool reMaterializeFor(MachineBasicBlock::iterator MI);
void reMaterializeAll();
bool coalesceStackAccess(MachineInstr *MI);
bool foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI = 0);
void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
};
}
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm) {
if (VerifySpills)
mf.verify(&pass, "When creating inline spiller");
return new InlineSpiller(pass, mf, vrm);
}
}
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
VNInfo *OrigVNI = edit_->getParent().getVNInfoAt(UseIdx);
if (!OrigVNI) {
DEBUG(dbgs() << "\tadding <undef> flags: ");
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg())
MO.setIsUndef();
}
DEBUG(dbgs() << UseIdx << '\t' << *MI);
return true;
}
LiveRangeEdit::Remat RM(OrigVNI);
if (!edit_->canRematerializeAt(RM, UseIdx, false, lis_)) {
usedValues_.insert(OrigVNI);
DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
return false;
}
// If the instruction also writes edit_->getReg(), it had better not require
// the same register for uses and defs.
bool Reads, Writes;
SmallVector<unsigned, 8> Ops;
tie(Reads, Writes) = MI->readsWritesVirtualRegister(edit_->getReg(), &Ops);
if (Writes) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
usedValues_.insert(OrigVNI);
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
return false;
}
}
}
// Before rematerializing into a register for a single instruction, try to
// fold a load into the instruction. That avoids allocating a new register.
if (RM.OrigMI->getDesc().canFoldAsLoad() &&
foldMemoryOperand(MI, Ops, RM.OrigMI)) {
edit_->markRematerialized(RM.ParentVNI);
return true;
}
// Alocate a new register for the remat.
LiveInterval &NewLI = edit_->create(mri_, lis_, vrm_);
NewLI.markNotSpillable();
// Rematting for a copy: Set allocation hint to be the destination register.
if (MI->isCopy())
mri_.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg());
// Finally we can rematerialize OrigMI before MI.
SlotIndex DefIdx = edit_->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
lis_, tii_, tri_);
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
<< *lis_.getInstructionFromIndex(DefIdx));
// Replace operands
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg()) {
MO.setReg(NewLI.reg);
MO.setIsKill();
}
}
DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
return true;
}
/// reMaterializeAll - Try to rematerialize as many uses as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
// Do a quick scan of the interval values to find if any are remattable.
if (!edit_->anyRematerializable(lis_, tii_, aa_))
return;
usedValues_.clear();
// Try to remat before all uses of edit_->getReg().
bool anyRemat = false;
for (MachineRegisterInfo::use_nodbg_iterator
RI = mri_.use_nodbg_begin(edit_->getReg());
MachineInstr *MI = RI.skipInstruction();)
anyRemat |= reMaterializeFor(MI);
if (!anyRemat)
return;
// Remove any values that were completely rematted.
bool anyRemoved = false;
for (LiveInterval::vni_iterator I = edit_->getParent().vni_begin(),
E = edit_->getParent().vni_end(); I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->hasPHIKill() || !edit_->didRematerialize(VNI) ||
usedValues_.count(VNI))
continue;
MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
lis_.RemoveMachineInstrFromMaps(DefMI);
vrm_.RemoveMachineInstrFromMaps(DefMI);
DefMI->eraseFromParent();
VNI->def = SlotIndex();
anyRemoved = true;
}
if (!anyRemoved)
return;
// Removing values may cause debug uses where parent is not live.
for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(edit_->getReg());
MachineInstr *MI = RI.skipInstruction();) {
if (!MI->isDebugValue())
continue;
// Try to preserve the debug value if parent is live immediately after it.
MachineBasicBlock::iterator NextMI = MI;
++NextMI;
if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) {
SlotIndex Idx = lis_.getInstructionIndex(NextMI);
VNInfo *VNI = edit_->getParent().getVNInfoAt(Idx);
if (VNI && (VNI->hasPHIKill() || usedValues_.count(VNI)))
continue;
}
DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
MI->eraseFromParent();
}
}
/// If MI is a load or store of stackSlot_, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI) {
int FI = 0;
unsigned reg;
if (!(reg = tii_.isLoadFromStackSlot(MI, FI)) &&
!(reg = tii_.isStoreToStackSlot(MI, FI)))
return false;
// We have a stack access. Is it the right register and slot?
if (reg != edit_->getReg() || FI != stackSlot_)
return false;
DEBUG(dbgs() << "Coalescing stack access: " << *MI);
lis_.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
return true;
}
/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
/// @param MI Instruction using or defining the current register.
/// @param Ops Operand indices from readsWritesVirtualRegister().
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
/// @return True on success, and MI will be erased.
bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) {
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
// operands.
SmallVector<unsigned, 8> FoldOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
unsigned Idx = Ops[i];
MachineOperand &MO = MI->getOperand(Idx);
if (MO.isImplicit())
continue;
// FIXME: Teach targets to deal with subregs.
if (MO.getSubReg())
return false;
// We cannot fold a load instruction into a def.
if (LoadMI && MO.isDef())
return false;
// Tied use operands should not be passed to foldMemoryOperand.
if (!MI->isRegTiedToDefOperand(Idx))
FoldOps.push_back(Idx);
}
MachineInstr *FoldMI =
LoadMI ? tii_.foldMemoryOperand(MI, FoldOps, LoadMI)
: tii_.foldMemoryOperand(MI, FoldOps, stackSlot_);
if (!FoldMI)
return false;
lis_.ReplaceMachineInstrInMaps(MI, FoldMI);
if (!LoadMI)
vrm_.addSpillSlotUse(stackSlot_, FoldMI);
MI->eraseFromParent();
DEBUG(dbgs() << "\tfolded: " << *FoldMI);
return true;
}
/// insertReload - Insert a reload of NewLI.reg before MI.
void InlineSpiller::insertReload(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
--MI; // Point to load instruction.
SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
}
/// insertSpill - Insert a spill of NewLI.reg after MI.
void InlineSpiller::insertSpill(LiveInterval &NewLI,
MachineBasicBlock::iterator MI) {
MachineBasicBlock &MBB = *MI->getParent();
// Get the defined value. It could be an early clobber so keep the def index.
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
VNInfo *VNI = edit_->getParent().getVNInfoAt(Idx);
assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo");
Idx = VNI->def;
tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
--MI; // Point to store instruction.
SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
vrm_.addSpillSlotUse(stackSlot_, MI);
DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, lis_.getVNInfoAllocator());
NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
}
void InlineSpiller::spill(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals,
const SmallVectorImpl<LiveInterval*> &spillIs) {
LiveRangeEdit edit(*li, newIntervals, &spillIs);
spill(edit);
if (VerifySpills)
mf_.verify(&pass_, "After inline spill");
}
void InlineSpiller::spill(LiveRangeEdit &edit) {
edit_ = &edit;
assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
&& "Trying to spill a stack slot.");
DEBUG(dbgs() << "Inline spilling "
<< mri_.getRegClass(edit.getReg())->getName()
<< ':' << edit.getParent() << "\nFrom original "
<< PrintReg(vrm_.getOriginal(edit.getReg())) << '\n');
assert(edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.");
reMaterializeAll();
// Remat may handle everything.
if (edit_->getParent().empty())
return;
rc_ = mri_.getRegClass(edit.getReg());
// Share a stack slot among all descendants of Orig.
unsigned Orig = vrm_.getOriginal(edit.getReg());
stackSlot_ = vrm_.getStackSlot(Orig);
if (stackSlot_ == VirtRegMap::NO_STACK_SLOT)
stackSlot_ = vrm_.assignVirt2StackSlot(Orig);
if (Orig != edit.getReg())
vrm_.assignVirt2StackSlot(edit.getReg(), stackSlot_);
// Update LiveStacks now that we are committed to spilling.
LiveInterval &stacklvr = lss_.getOrCreateInterval(stackSlot_, rc_);
if (!stacklvr.hasAtLeastOneValue())
stacklvr.getNextValue(SlotIndex(), 0, lss_.getVNInfoAllocator());
stacklvr.MergeRangesInAsValue(edit_->getParent(), stacklvr.getValNumInfo(0));
// Iterate over instructions using register.
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(edit.getReg());
MachineInstr *MI = RI.skipInstruction();) {
// Debug values are not allowed to affect codegen.
if (MI->isDebugValue()) {
// Modify DBG_VALUE now that the value is in a spill slot.
uint64_t Offset = MI->getOperand(1).getImm();
const MDNode *MDPtr = MI->getOperand(2).getMetadata();
DebugLoc DL = MI->getDebugLoc();
if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_,
Offset, MDPtr, DL)) {
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
MachineBasicBlock *MBB = MI->getParent();
MBB->insert(MBB->erase(MI), NewDV);
} else {
DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
MI->eraseFromParent();
}
continue;
}
// Stack slot accesses may coalesce away.
if (coalesceStackAccess(MI))
continue;
// Analyze instruction.
bool Reads, Writes;
SmallVector<unsigned, 8> Ops;
tie(Reads, Writes) = MI->readsWritesVirtualRegister(edit.getReg(), &Ops);
// Attempt to fold memory ops.
if (foldMemoryOperand(MI, Ops))
continue;
// Allocate interval around instruction.
// FIXME: Infer regclass from instruction alone.
LiveInterval &NewLI = edit.create(mri_, lis_, vrm_);
NewLI.markNotSpillable();
if (Reads)
insertReload(NewLI, MI);
// Rewrite instruction operands.
bool hasLiveDef = false;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(Ops[i]);
MO.setReg(NewLI.reg);
if (MO.isUse()) {
if (!MI->isRegTiedToDefOperand(Ops[i]))
MO.setIsKill();
} else {
if (!MO.isDead())
hasLiveDef = true;
}
}
// FIXME: Use a second vreg if instruction has no tied ops.
if (Writes && hasLiveDef)
insertSpill(NewLI, MI);
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
}
}