llvm-6502/lib/Analysis/TargetTransformInfo.cpp

281 lines
7.9 KiB
C++
Raw Normal View History

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
// Setup the analysis group to manage the TargetTransformInfo passes.
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
char TargetTransformInfo::ID = 0;
TargetTransformInfo::~TargetTransformInfo() {
}
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
void TargetTransformInfo::pushTTIStack(Pass *P) {
TopTTI = this;
PrevTTI = &P->getAnalysis<TargetTransformInfo>();
// Walk up the chain and update the top TTI pointer.
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
PTTI->TopTTI = this;
}
void TargetTransformInfo::popTTIStack() {
TopTTI = 0;
// Walk up the chain and update the top TTI pointer.
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
PTTI->TopTTI = PrevTTI;
PrevTTI = 0;
}
void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfo>();
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return PrevTTI->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return PrevTTI->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale) const {
return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale);
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return PrevTTI->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return PrevTTI->isTypeLegal(Ty);
}
unsigned TargetTransformInfo::getJumpBufAlignment() const {
return PrevTTI->getJumpBufAlignment();
}
unsigned TargetTransformInfo::getJumpBufSize() const {
return PrevTTI->getJumpBufSize();
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return PrevTTI->shouldBuildLookupTables();
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return PrevTTI->getPopcntSupport(IntTyWidthInBit);
}
unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
return PrevTTI->getIntImmCost(Imm, Ty);
}
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return PrevTTI->getNumberOfRegisters(Vector);
}
unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
return PrevTTI->getMaximumUnrollFactor();
}
unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {
return PrevTTI->getArithmeticInstrCost(Opcode, Ty);
}
unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const {
return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
}
unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
}
unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
return PrevTTI->getCFInstrCost(Opcode);
}
unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
}
unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
;
}
unsigned
TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
Type *RetTy,
ArrayRef<Type *> Tys) const {
return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return PrevTTI->getNumberOfParts(Tp);
}
namespace {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
struct NoTTI : ImmutablePass, TargetTransformInfo {
NoTTI() : ImmutablePass(ID) {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
virtual void initializePass() {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
PrevTTI = 0;
}
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// Note that this subclass is special, and must *not* call
// TTI::getAnalysisUsage as it breaks the recursion.
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
virtual void *getAdjustedAnalysisPointer(const void *ID) {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
bool isLegalAddImmediate(int64_t Imm) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return false;
}
bool isLegalICmpImmediate(int64_t Imm) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return false;
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) const {
Switch the SCEV expander and LoopStrengthReduce to use TargetTransformInfo rather than TargetLowering, removing one of the primary instances of the layering violation of Transforms depending directly on Target. This is a really big deal because LSR used to be a "special" pass that could only be tested fully using llc and by looking at the full output of it. It also couldn't run with any other loop passes because it had to be created by the backend. No longer is this true. LSR is now just a normal pass and we should probably lift the creation of LSR out of lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done this, or updated all of the tests to use opt and a triple, because I suspect someone more familiar with LSR would do a better job. This change should be essentially without functional impact for normal compilations, and only change behvaior of targetless compilations. The conversion required changing all of the LSR code to refer to the TTI interfaces, which fortunately are very similar to TargetLowering's interfaces. However, it also allowed us to *always* expect to have some implementation around. I've pushed that simplification through the pass, and leveraged it to simplify code somewhat. It required some test updates for one of two things: either we used to skip some checks altogether but now we get the default "no" answer for them, or we used to have no information about the target and now we do have some. I've also started the process of removing AddrMode, as the TTI interface doesn't use it any longer. In some cases this simplifies code, and in others it adds some complexity, but I think it's not a bad tradeoff even there. Subsequent patches will try to clean this up even further and use other (more appropriate) abstractions. Yet again, almost all of the formatting changes brought to you by clang-format. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171735 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 14:41:08 +00:00
// Guess that reg+reg addressing is allowed. This heuristic is taken from
// the implementation of LSR.
return !BaseGV && BaseOffset == 0 && Scale <= 1;
}
bool isTruncateFree(Type *Ty1, Type *Ty2) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return false;
}
bool isTypeLegal(Type *Ty) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return false;
}
unsigned getJumpBufAlignment() const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 0;
}
unsigned getJumpBufSize() const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 0;
}
bool shouldBuildLookupTables() const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return true;
}
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
return PSK_Software;
}
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getNumberOfRegisters(bool Vector) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 8;
}
unsigned getMaximumUnrollFactor() const {
return 1;
}
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index = 0, Type *SubTp = 0) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getCFInstrCost(unsigned Opcode) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy = 0) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index = -1) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
Type *RetTy,
ArrayRef<Type*> Tys) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 1;
}
unsigned getNumberOfParts(Type *Tp) const {
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
return 0;
}
};
} // end anonymous namespace
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
"No target information", true, true, true)
char NoTTI::ID = 0;
Switch TargetTransformInfo from an immutable analysis pass that requires a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00
ImmutablePass *llvm::createNoTargetTransformInfoPass() {
return new NoTTI();
}