llvm-6502/lib/Transforms/Scalar/Reassociate.cpp

284 lines
10 KiB
C++
Raw Normal View History

//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propogation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// Note that this pass works best if left shifts have been promoted to explicit
// multiplies before this pass executes.
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iOperators.h"
#include "llvm/Type.h"
#include "llvm/Pass.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/PostOrderIterator.h"
#include "Support/StatisticReporter.h"
static Statistic<> NumLinear ("reassociate\t- Number of insts linearized");
static Statistic<> NumChanged("reassociate\t- Number of insts reassociated");
static Statistic<> NumSwapped("reassociate\t- Number of insts with operands swapped");
namespace {
class Reassociate : public FunctionPass {
std::map<BasicBlock*, unsigned> RankMap;
public:
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
}
private:
void BuildRankMap(Function &F);
unsigned getRank(Value *V);
bool ReassociateExpr(BinaryOperator *I);
bool ReassociateBB(BasicBlock *BB);
};
RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
}
Pass *createReassociatePass() { return new Reassociate(); }
void Reassociate::BuildRankMap(Function &F) {
unsigned i = 1;
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
E = RPOT.end(); I != E; ++I)
RankMap[*I] = ++i;
}
unsigned Reassociate::getRank(Value *V) {
if (isa<Argument>(V)) return 1; // Function argument...
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
// can reassociate expressions for code motion! Since we do not recurse for
// PHI nodes, we cannot have infinite recursion here, because there cannot
// be loops in the value graph (except for PHI nodes).
//
if (I->getOpcode() == Instruction::PHINode ||
I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
I->hasSideEffects())
return RankMap[I->getParent()];
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
for (unsigned i = 0, e = I->getNumOperands();
i != e && Rank != MaxRank; ++i)
Rank = std::max(Rank, getRank(I->getOperand(i)));
return Rank;
}
// Otherwise it's a global or constant, rank 0.
return 0;
}
// isCommutativeOperator - Return true if the specified instruction is
// commutative and associative. If the instruction is not commutative and
// associative, we can not reorder its operands!
//
static inline BinaryOperator *isCommutativeOperator(Instruction *I) {
// Floating point operations do not commute!
if (I->getType()->isFloatingPoint()) return 0;
if (I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::And ||
I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::Xor)
return cast<BinaryOperator>(I);
return 0;
}
bool Reassociate::ReassociateExpr(BinaryOperator *I) {
Value *LHS = I->getOperand(0);
Value *RHS = I->getOperand(1);
unsigned LHSRank = getRank(LHS);
unsigned RHSRank = getRank(RHS);
bool Changed = false;
// Make sure the LHS of the operand always has the greater rank...
if (LHSRank < RHSRank) {
I->swapOperands();
std::swap(LHS, RHS);
std::swap(LHSRank, RHSRank);
Changed = true;
++NumSwapped;
DEBUG(std::cerr << "Transposed: " << I << " Result BB: " << I->getParent());
}
// If the LHS is the same operator as the current one is, and if we are the
// only expression using it...
//
if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
// If the rank of our current RHS is less than the rank of the LHS's LHS,
// then we reassociate the two instructions...
if (RHSRank < getRank(LHSI->getOperand(0))) {
unsigned TakeOp = 0;
if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
if (IOp->getOpcode() == LHSI->getOpcode())
TakeOp = 1; // Hoist out non-tree portion
// Convert ((a + 12) + 10) into (a + (12 + 10))
I->setOperand(0, LHSI->getOperand(TakeOp));
LHSI->setOperand(TakeOp, RHS);
I->setOperand(1, LHSI);
++NumChanged;
DEBUG(std::cerr << "Reassociated: " << I << " Result BB: "
<< I->getParent());
// Since we modified the RHS instruction, make sure that we recheck it.
ReassociateExpr(LHSI);
return true;
}
}
return Changed;
}
// NegateValue - Insert instructions before the instruction pointed to by BI,
// that computes the negative version of the value specified. The negative
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
// this means that we turn this:
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unneccesary negation instructions...
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
Value *RHS = NegateValue(I->getOperand(1), BB, BI);
Value *LHS = NegateValue(I->getOperand(0), BB, BI);
// We must actually insert a new add instruction here, because the neg
// instructions do not dominate the old add instruction in general. By
// adding it now, we are assured that the neg instructions we just
// inserted dominate the instruction we are about to insert after them.
//
BasicBlock::iterator NBI = cast<Instruction>(RHS);
Instruction *Add =
BinaryOperator::create(Instruction::Add, LHS, RHS, I->getName()+".neg");
BB->getInstList().insert(++NBI, Add); // Add to the basic block...
return Add;
}
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
//
Instruction *Neg =
BinaryOperator::create(Instruction::Sub,
Constant::getNullValue(V->getType()), V,
V->getName()+".neg");
BI = BB->getInstList().insert(BI, Neg); // Add to the basic block...
return Neg;
}
bool Reassociate::ReassociateBB(BasicBlock *BB) {
bool Changed = false;
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
// If this instruction is a commutative binary operator, and the ranks of
// the two operands are sorted incorrectly, fix it now.
//
if (BinaryOperator *I = isCommutativeOperator(BI)) {
if (!I->use_empty()) {
// Make sure that we don't have a tree-shaped computation. If we do,
// linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D
//
Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
RHSI->use_size() == 1) {
// Insert a new temporary instruction... (A+B)+C
BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
RHSI->getOperand(0),
RHSI->getName()+".ra");
BI = BB->getInstList().insert(BI, Tmp); // Add to the basic block...
I->setOperand(0, Tmp);
I->setOperand(1, RHSI->getOperand(1));
// Process the temporary instruction for reassociation now.
I = Tmp;
++NumLinear;
Changed = true;
DEBUG(std::cerr << "Linearized: " << I << " Result BB: " << BB);
}
// Make sure that this expression is correctly reassociated with respect
// to it's used values...
//
Changed |= ReassociateExpr(I);
}
} else if (BI->getOpcode() == Instruction::Sub &&
BI->getOperand(0) != Constant::getNullValue(BI->getType())) {
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
//
Instruction *New = BinaryOperator::create(Instruction::Add,
BI->getOperand(0),
BI->getOperand(1),
BI->getName());
Value *NegatedValue = BI->getOperand(1);
// Everyone now refers to the add instruction...
BI->replaceAllUsesWith(New);
// Put the new add in the place of the subtract... deleting the subtract
BI = BB->getInstList().erase(BI);
BI = ++BB->getInstList().insert(BI, New);
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
New->setOperand(1, NegateValue(NegatedValue, BB, BI));
--BI;
Changed = true;
DEBUG(std::cerr << "Negated: " << New << " Result BB: " << BB);
}
}
return Changed;
}
bool Reassociate::runOnFunction(Function &F) {
// Recalculate the rank map for F
BuildRankMap(F);
bool Changed = false;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Changed |= ReassociateBB(FI);
// We are done with the rank map...
RankMap.clear();
return Changed;
}