llvm-6502/include/llvm/Value.h

272 lines
9.5 KiB
C
Raw Normal View History

//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
//
// This file defines the very important Value class. This is subclassed by a
// bunch of other important classes, like Def, Method, Module, Type, etc...
//
// This file also defines the Use<> template for users of value.
//
// This file also defines the isa<X>(), cast<X>(), and dyn_cast<X>() templates.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include <vector>
#include "llvm/Annotation.h"
#include "llvm/AbstractTypeUser.h"
class User;
class Type;
class ConstPoolVal;
class MethodArgument;
class Instruction;
class BasicBlock;
class Method;
class GlobalVariable;
class Module;
class SymbolTable;
template<class ValueSubclass, class ItemParentType, class SymTabType>
class ValueHolder;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
class Value : public Annotable, // Values are annotable
public AbstractTypeUser { // Values use potentially abstract types
public:
enum ValueTy {
TypeVal, // This is an instance of Type
ConstantVal, // This is an instance of ConstPoolVal
MethodArgumentVal, // This is an instance of MethodArgument
InstructionVal, // This is an instance of Instruction
BasicBlockVal, // This is an instance of BasicBlock
MethodVal, // This is an instance of Method
GlobalVal, // This is an instance of GlobalVariable
ModuleVal, // This is an instance of Module
};
private:
vector<User *> Uses;
string Name;
PATypeHandle<Type> Ty;
ValueTy VTy;
Value(const Value &); // Do not implement
protected:
inline void setType(const Type *ty) { Ty = ty; }
public:
Value(const Type *Ty, ValueTy vty, const string &name = "");
virtual ~Value();
// Support for debugging
void dump() const;
// All values can potentially be typed
inline const Type *getType() const { return Ty; }
// All values can potentially be named...
inline bool hasName() const { return Name != ""; }
inline const string &getName() const { return Name; }
virtual void setName(const string &name, SymbolTable * = 0) {
Name = name;
}
// Methods for determining the subtype of this Value. The getValueType()
// method returns the type of the value directly. The cast*() methods are
// equivalent to using dynamic_cast<>... if the cast is successful, this is
// returned, otherwise you get a null pointer.
//
// The family of functions Val->cast<type>Asserting() is used in the same
// way as the Val->cast<type>() instructions, but they assert the expected
// type instead of checking it at runtime.
//
inline ValueTy getValueType() const { return VTy; }
// replaceAllUsesWith - Go through the uses list for this definition and make
// each use point to "D" instead of "this". After this completes, 'this's
// use list should be empty.
//
void replaceAllUsesWith(Value *D);
// refineAbstractType - This function is implemented because we use
// potentially abstract types, and these types may be resolved to more
// concrete types after we are constructed.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
//----------------------------------------------------------------------
// Methods for handling the vector of uses of this Value.
//
typedef vector<User*>::iterator use_iterator;
typedef vector<User*>::const_iterator use_const_iterator;
inline unsigned use_size() const { return Uses.size(); }
inline bool use_empty() const { return Uses.empty(); }
inline use_iterator use_begin() { return Uses.begin(); }
inline use_const_iterator use_begin() const { return Uses.begin(); }
inline use_iterator use_end() { return Uses.end(); }
inline use_const_iterator use_end() const { return Uses.end(); }
inline void use_push_back(User *I) { Uses.push_back(I); }
User *use_remove(use_iterator &I);
inline void addUse(User *I) { Uses.push_back(I); }
void killUse(User *I);
};
//===----------------------------------------------------------------------===//
// UseTy Class
//===----------------------------------------------------------------------===//
// UseTy and it's friendly typedefs (Use) are here to make keeping the "use"
// list of a definition node up-to-date really easy.
//
template<class ValueSubclass>
class UseTy {
ValueSubclass *Val;
User *U;
public:
inline UseTy<ValueSubclass>(ValueSubclass *v, User *user) {
Val = v; U = user;
if (Val) Val->addUse(U);
}
inline ~UseTy<ValueSubclass>() { if (Val) Val->killUse(U); }
inline operator ValueSubclass *() const { return Val; }
inline UseTy<ValueSubclass>(const UseTy<ValueSubclass> &user) {
Val = 0;
U = user.U;
operator=(user.Val);
}
inline ValueSubclass *operator=(ValueSubclass *V) {
if (Val) Val->killUse(U);
Val = V;
if (V) V->addUse(U);
return V;
}
inline ValueSubclass *operator->() { return Val; }
inline const ValueSubclass *operator->() const { return Val; }
inline ValueSubclass *get() { return Val; }
inline const ValueSubclass *get() const { return Val; }
inline UseTy<ValueSubclass> &operator=(const UseTy<ValueSubclass> &user) {
if (Val) Val->killUse(U);
Val = user.Val;
Val->addUse(U);
return *this;
}
};
typedef UseTy<Value> Use; // Provide Use as a common UseTy type
// real_type - Provide a macro to get the real type of a value that might be
// a use. This provides a typedef 'Type' that is the argument type for all
// non UseTy types, and is the contained pointer type of the use if it is a
// UseTy.
//
template <class X> class real_type { typedef X Type; };
template <class X> class real_type <class UseTy<X> > { typedef X *Type; };
//===----------------------------------------------------------------------===//
// Type Checking Templates
//===----------------------------------------------------------------------===//
// isa<X> - Return true if the parameter to the template is an instance of the
// template type argument. Used like this:
//
// if (isa<Type>(myVal)) { ... }
//
template <class X, class Y>
inline bool isa(Y Val) { return X::classof(Val); }
// cast<X> - Return the argument parameter cast to the specified type. This
// casting operator asserts that the type is correct, so it does not return null
// on failure. Used Like this:
//
// cast< Instruction>(myVal)->getParent()
// cast<const Instruction>(myVal)->getParent()
//
template <class X, class Y>
inline X *cast(Y Val) {
assert(isa<X>(Val) && "Invalid cast argument type!");
return (X*)(real_type<Y>::Type)Val;
}
// dyn_cast<X> - Return the argument parameter cast to the specified type. This
// casting operator returns null if the argument is of the wrong type, so it can
// be used to test for a type as well as cast if successful. This should be
// used in the context of an if statement like this:
//
// if (const Instruction *I = dyn_cast<const Instruction>(myVal)) { ... }
//
template <class X, class Y>
inline X *dyn_cast(Y Val) {
return isa<X>(Val) ? cast<X>(Val) : 0;
}
// isa - Provide some specializations of isa so that we have to include the
// subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa<Type, const Value*>(const Value *Val) {
return Val->getValueType() == Value::TypeVal;
}
template <> inline bool isa<Type, Value*>(Value *Val) {
return Val->getValueType() == Value::TypeVal;
}
template <> inline bool isa<ConstPoolVal, const Value*>(const Value *Val) {
return Val->getValueType() == Value::ConstantVal;
}
template <> inline bool isa<ConstPoolVal, Value*>(Value *Val) {
return Val->getValueType() == Value::ConstantVal;
}
template <> inline bool isa<MethodArgument, const Value*>(const Value *Val) {
return Val->getValueType() == Value::MethodArgumentVal;
}
template <> inline bool isa<MethodArgument, Value*>(Value *Val) {
return Val->getValueType() == Value::MethodArgumentVal;
}
template <> inline bool isa<Instruction, const Value*>(const Value *Val) {
return Val->getValueType() == Value::InstructionVal;
}
template <> inline bool isa<Instruction, Value*>(Value *Val) {
return Val->getValueType() == Value::InstructionVal;
}
template <> inline bool isa<BasicBlock, const Value*>(const Value *Val) {
return Val->getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa<BasicBlock, Value*>(Value *Val) {
return Val->getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa<Method, const Value*>(const Value *Val) {
return Val->getValueType() == Value::MethodVal;
}
template <> inline bool isa<Method, Value*>(Value *Val) {
return Val->getValueType() == Value::MethodVal;
}
template <> inline bool isa<GlobalVariable, const Value*>(const Value *Val) {
return Val->getValueType() == Value::GlobalVal;
}
template <> inline bool isa<GlobalVariable, Value*>(Value *Val) {
return Val->getValueType() == Value::GlobalVal;
}
template <> inline bool isa<Module, const Value*>(const Value *Val) {
return Val->getValueType() == Value::ModuleVal;
}
template <> inline bool isa<Module, Value*>(Value *Val) {
return Val->getValueType() == Value::ModuleVal;
}
#endif