[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
; RUN: llc -mtriple=powerpc64-unknown-linux-gnu -mcpu=pwr7 -mattr=-vsx < %s | FileCheck %s
|
|
|
|
; RUN: llc -mtriple=powerpc64-unknown-linux-gnu -mcpu=pwr7 -mattr=+vsx < %s | FileCheck -check-prefix=CHECK-VSX %s
|
2013-09-12 23:20:06 +00:00
|
|
|
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-v128:128:128-n32:64"
|
|
|
|
target triple = "powerpc64-unknown-linux-gnu"
|
|
|
|
|
|
|
|
%struct.s2 = type { i64, <4 x float> }
|
|
|
|
|
|
|
|
@ve = external global <4 x float>
|
|
|
|
@n = external global i64
|
|
|
|
|
|
|
|
; Function Attrs: nounwind
|
|
|
|
define void @test1(i64 %d1, i64 %d2, i64 %d3, i64 %d4, i64 %d5, i64 %d6, i64 %d7, i64 %d8, i64 %d9, <4 x float> inreg %vs.coerce) #0 {
|
|
|
|
entry:
|
2013-09-12 23:23:12 +00:00
|
|
|
store <4 x float> %vs.coerce, <4 x float>* @ve, align 16
|
2013-09-12 23:20:06 +00:00
|
|
|
ret void
|
|
|
|
|
|
|
|
; CHECK-LABEL: @test1
|
|
|
|
; CHECK: stvx 2,
|
|
|
|
; CHECK: blr
|
[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
|
|
|
|
; CHECK-VSX-LABEL: @test1
|
|
|
|
; CHECK-VSX: stxvw4x 34,
|
|
|
|
; CHECK-VSX: blr
|
2013-09-12 23:20:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
; Function Attrs: nounwind
|
|
|
|
define void @test2(i64 %d1, i64 %d2, i64 %d3, i64 %d4, i64 %d5, i64 %d6, i64 %d7, i64 %d8, %struct.s2* byval nocapture readonly %vs) #0 {
|
|
|
|
entry:
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
|
|
|
%m = getelementptr inbounds %struct.s2, %struct.s2* %vs, i64 0, i32 0
|
2013-09-12 23:23:12 +00:00
|
|
|
%0 = load i64* %m, align 8
|
|
|
|
store i64 %0, i64* @n, align 8
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
|
|
|
%v = getelementptr inbounds %struct.s2, %struct.s2* %vs, i64 0, i32 1
|
2013-09-12 23:23:12 +00:00
|
|
|
%1 = load <4 x float>* %v, align 16
|
|
|
|
store <4 x float> %1, <4 x float>* @ve, align 16
|
2013-09-12 23:20:06 +00:00
|
|
|
ret void
|
|
|
|
|
|
|
|
; CHECK-LABEL: @test2
|
[PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 21:36:59 +00:00
|
|
|
; CHECK-DAG: ld {{[0-9]+}}, 112(1)
|
|
|
|
; CHECK-DAG: li [[REG16:[0-9]+]], 16
|
|
|
|
; CHECK-DAG: addi [[REGB:[0-9]+]], 1, 112
|
|
|
|
; CHECK-DAG: lvx 2, [[REGB]], [[REG16]]
|
2013-09-12 23:20:06 +00:00
|
|
|
; CHECK: blr
|
[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
|
|
|
|
; CHECK-VSX-LABEL: @test2
|
[PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 21:36:59 +00:00
|
|
|
; CHECK-VSX-DAG: ld {{[0-9]+}}, 112(1)
|
|
|
|
; CHECK-VSX-DAG: li [[REG16:[0-9]+]], 16
|
|
|
|
; CHECK-VSX-DAG: addi [[REGB:[0-9]+]], 1, 112
|
|
|
|
; CHECK-VSX-DAG: lxvw4x {{[0-9]+}}, [[REGB]], [[REG16]]
|
[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
; CHECK-VSX: blr
|
2013-09-12 23:20:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
; Function Attrs: nounwind
|
|
|
|
define void @test3(i64 %d1, i64 %d2, i64 %d3, i64 %d4, i64 %d5, i64 %d6, i64 %d7, i64 %d8, i64 %d9, %struct.s2* byval nocapture readonly %vs) #0 {
|
|
|
|
entry:
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
|
|
|
%m = getelementptr inbounds %struct.s2, %struct.s2* %vs, i64 0, i32 0
|
2013-09-12 23:23:12 +00:00
|
|
|
%0 = load i64* %m, align 8
|
|
|
|
store i64 %0, i64* @n, align 8
|
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00
|
|
|
%v = getelementptr inbounds %struct.s2, %struct.s2* %vs, i64 0, i32 1
|
2013-09-12 23:23:12 +00:00
|
|
|
%1 = load <4 x float>* %v, align 16
|
|
|
|
store <4 x float> %1, <4 x float>* @ve, align 16
|
2013-09-12 23:20:06 +00:00
|
|
|
ret void
|
|
|
|
|
|
|
|
; CHECK-LABEL: @test3
|
[PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 21:36:59 +00:00
|
|
|
; CHECK-DAG: ld {{[0-9]+}}, 128(1)
|
|
|
|
; CHECK-DAG: li [[REG16:[0-9]+]], 16
|
|
|
|
; CHECK-DAG: addi [[REGB:[0-9]+]], 1, 128
|
|
|
|
; CHECK-DAG: lvx 2, [[REGB]], [[REG16]]
|
2013-09-12 23:20:06 +00:00
|
|
|
; CHECK: blr
|
[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
|
|
|
|
; CHECK-VSX-LABEL: @test3
|
[PowerPC] Make LDtocL and friends invariant loads
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-25 21:36:59 +00:00
|
|
|
; CHECK-VSX-DAG: ld {{[0-9]+}}, 128(1)
|
|
|
|
; CHECK-VSX-DAG: li [[REG16:[0-9]+]], 16
|
|
|
|
; CHECK-VSX-DAG: addi [[REGB:[0-9]+]], 1, 128
|
|
|
|
; CHECK-VSX-DAG: lxvw4x {{[0-9]+}}, [[REGB]], [[REG16]]
|
[PowerPC] Enable use of lxvw4x/stxvw4x in VSX code generation
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220047 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 15:13:38 +00:00
|
|
|
; CHECK-VSX: blr
|
2013-09-12 23:20:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
attributes #0 = { nounwind }
|
|
|
|
|