llvm-6502/lib/ExecutionEngine/MCJIT/MCJIT.cpp

228 lines
7.8 KiB
C++
Raw Normal View History

//===-- MCJIT.cpp - MC-based Just-in-Time Compiler --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "MCJITMemoryManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine *MCJIT::createJIT(Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
CodeGenOpt::Level OptLevel,
bool GVsWithCode,
CodeModel::Model CMM,
StringRef MArch,
StringRef MCPU,
const SmallVectorImpl<std::string>& MAttrs) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
// Pick a target either via -march or by guessing the native arch.
//
// FIXME: This should be lifted out of here, it isn't something which should
// be part of the JIT policy, rather the burden for this selection should be
// pushed to clients.
TargetMachine *TM = MCJIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
TM->setCodeModel(CMM);
// If the target supports JIT code generation, create the JIT.
if (TargetJITInfo *TJ = TM->getJITInfo())
return new MCJIT(M, TM, *TJ, new MCJITMemoryManager(JMM), OptLevel,
GVsWithCode);
if (ErrorStr)
*ErrorStr = "target does not support JIT code generation";
return 0;
}
MCJIT::MCJIT(Module *m, TargetMachine *tm, TargetJITInfo &tji,
RTDyldMemoryManager *MM, CodeGenOpt::Level OptLevel,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), MemMgr(MM), M(m), OS(Buffer), Dyld(MM) {
PM.add(new TargetData(*TM->getTargetData()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, OS, CodeGenOpt::Default, false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
// FIXME: When we support multiple modules, we'll want to move the code
// gen and finalization out of the constructor here and do it more
// on-demand as part of getPointerToFunction().
PM.run(*M);
// Flush the output buffer so the SmallVector gets its data.
OS.flush();
// Load the object into the dynamic linker.
// FIXME: It would be nice to avoid making yet another copy.
MemoryBuffer *MB = MemoryBuffer::getMemBufferCopy(StringRef(Buffer.data(),
Buffer.size()));
if (Dyld.loadObject(MB))
report_fatal_error(Dyld.getErrorString());
}
MCJIT::~MCJIT() {
delete MemMgr;
}
void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
report_fatal_error("not yet implemented");
return 0;
}
void *MCJIT::getPointerToFunction(Function *F) {
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
addGlobalMapping(F, Addr);
return Addr;
}
Twine Name = TM->getMCAsmInfo()->getGlobalPrefix() + F->getName();
return (void*)Dyld.getSymbolAddress(Name.str());
}
void *MCJIT::recompileAndRelinkFunction(Function *F) {
report_fatal_error("not yet implemented");
}
void MCJIT::freeMachineCodeForFunction(Function *F) {
report_fatal_error("not yet implemented");
}
GenericValue MCJIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
const FunctionType *FTy = F->getFunctionType();
const Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
return rv;
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
assert("Full-featured argument passing not supported yet!");
return GenericValue();
}