2009-10-13 18:30:07 +00:00
|
|
|
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements inline cost analysis.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
|
|
#include "llvm/Support/CallSite.h"
|
|
|
|
#include "llvm/CallingConv.h"
|
|
|
|
#include "llvm/IntrinsicInst.h"
|
2011-10-01 01:39:05 +00:00
|
|
|
#include "llvm/Target/TargetData.h"
|
2009-10-13 18:30:07 +00:00
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
2011-02-05 00:49:15 +00:00
|
|
|
|
2009-10-13 18:30:07 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
2012-03-08 02:04:19 +00:00
|
|
|
unsigned InlineCostAnalyzer::FunctionInfo::countCodeReductionForConstant(
|
|
|
|
const CodeMetrics &Metrics, Value *V) {
|
2010-09-09 16:56:42 +00:00
|
|
|
unsigned Reduction = 0;
|
2012-03-14 07:32:53 +00:00
|
|
|
SmallVector<Value *, 4> Worklist;
|
|
|
|
Worklist.push_back(V);
|
|
|
|
do {
|
|
|
|
Value *V = Worklist.pop_back_val();
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
|
|
User *U = *UI;
|
|
|
|
if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
|
|
|
|
// We will be able to eliminate all but one of the successors.
|
|
|
|
const TerminatorInst &TI = cast<TerminatorInst>(*U);
|
|
|
|
const unsigned NumSucc = TI.getNumSuccessors();
|
|
|
|
unsigned Instrs = 0;
|
|
|
|
for (unsigned I = 0; I != NumSucc; ++I)
|
|
|
|
Instrs += Metrics.NumBBInsts.lookup(TI.getSuccessor(I));
|
|
|
|
// We don't know which blocks will be eliminated, so use the average size.
|
|
|
|
Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2010-09-09 16:56:42 +00:00
|
|
|
// Figure out if this instruction will be removed due to simple constant
|
|
|
|
// propagation.
|
|
|
|
Instruction &Inst = cast<Instruction>(*U);
|
|
|
|
|
|
|
|
// We can't constant propagate instructions which have effects or
|
|
|
|
// read memory.
|
|
|
|
//
|
|
|
|
// FIXME: It would be nice to capture the fact that a load from a
|
|
|
|
// pointer-to-constant-global is actually a *really* good thing to zap.
|
|
|
|
// Unfortunately, we don't know the pointer that may get propagated here,
|
|
|
|
// so we can't make this decision.
|
|
|
|
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
|
|
|
isa<AllocaInst>(Inst))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
bool AllOperandsConstant = true;
|
|
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
|
|
AllOperandsConstant = false;
|
|
|
|
break;
|
|
|
|
}
|
2012-03-14 07:32:53 +00:00
|
|
|
if (!AllOperandsConstant)
|
|
|
|
continue;
|
2010-09-09 16:56:42 +00:00
|
|
|
|
2012-03-14 07:32:53 +00:00
|
|
|
// We will get to remove this instruction...
|
|
|
|
Reduction += InlineConstants::InstrCost;
|
2010-09-09 16:56:42 +00:00
|
|
|
|
2012-03-14 07:32:53 +00:00
|
|
|
// And any other instructions that use it which become constants
|
|
|
|
// themselves.
|
|
|
|
Worklist.push_back(&Inst);
|
2010-09-09 16:56:42 +00:00
|
|
|
}
|
2012-03-14 07:32:53 +00:00
|
|
|
} while (!Worklist.empty());
|
2010-09-09 16:56:42 +00:00
|
|
|
return Reduction;
|
|
|
|
}
|
|
|
|
|
2012-03-09 02:49:36 +00:00
|
|
|
static unsigned countCodeReductionForAllocaICmp(const CodeMetrics &Metrics,
|
|
|
|
ICmpInst *ICI) {
|
|
|
|
unsigned Reduction = 0;
|
|
|
|
|
|
|
|
// Bail if this is comparing against a non-constant; there is nothing we can
|
|
|
|
// do there.
|
|
|
|
if (!isa<Constant>(ICI->getOperand(1)))
|
|
|
|
return Reduction;
|
|
|
|
|
|
|
|
// An icmp pred (alloca, C) becomes true if the predicate is true when
|
|
|
|
// equal and false otherwise.
|
|
|
|
bool Result = ICI->isTrueWhenEqual();
|
|
|
|
|
|
|
|
SmallVector<Instruction *, 4> Worklist;
|
|
|
|
Worklist.push_back(ICI);
|
|
|
|
do {
|
|
|
|
Instruction *U = Worklist.pop_back_val();
|
|
|
|
Reduction += InlineConstants::InstrCost;
|
|
|
|
for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
|
|
|
|
UI != UE; ++UI) {
|
|
|
|
Instruction *I = dyn_cast<Instruction>(*UI);
|
|
|
|
if (!I || I->mayHaveSideEffects()) continue;
|
|
|
|
if (I->getNumOperands() == 1)
|
|
|
|
Worklist.push_back(I);
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
|
|
|
|
// If BO produces the same value as U, then the other operand is
|
|
|
|
// irrelevant and we can put it into the Worklist to continue
|
|
|
|
// deleting dead instructions. If BO produces the same value as the
|
|
|
|
// other operand, we can delete BO but that's it.
|
|
|
|
if (Result == true) {
|
|
|
|
if (BO->getOpcode() == Instruction::Or)
|
|
|
|
Worklist.push_back(I);
|
|
|
|
if (BO->getOpcode() == Instruction::And)
|
|
|
|
Reduction += InlineConstants::InstrCost;
|
|
|
|
} else {
|
|
|
|
if (BO->getOpcode() == Instruction::Or ||
|
|
|
|
BO->getOpcode() == Instruction::Xor)
|
|
|
|
Reduction += InlineConstants::InstrCost;
|
|
|
|
if (BO->getOpcode() == Instruction::And)
|
|
|
|
Worklist.push_back(I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
|
|
|
|
BasicBlock *BB = BI->getSuccessor(Result ? 0 : 1);
|
|
|
|
if (BB->getSinglePredecessor())
|
|
|
|
Reduction
|
|
|
|
+= InlineConstants::InstrCost * Metrics.NumBBInsts.lookup(BB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (!Worklist.empty());
|
|
|
|
|
|
|
|
return Reduction;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Compute the reduction possible for a given instruction if we are able
|
|
|
|
/// to SROA an alloca.
|
|
|
|
///
|
|
|
|
/// The reduction for this instruction is added to the SROAReduction output
|
|
|
|
/// parameter. Returns false if this instruction is expected to defeat SROA in
|
|
|
|
/// general.
|
2012-03-10 22:41:06 +00:00
|
|
|
static bool countCodeReductionForSROAInst(Instruction *I,
|
|
|
|
SmallVectorImpl<Value *> &Worklist,
|
|
|
|
unsigned &SROAReduction) {
|
2012-03-09 02:49:36 +00:00
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
|
|
if (!LI->isSimple())
|
|
|
|
return false;
|
|
|
|
SROAReduction += InlineConstants::InstrCost;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
|
|
if (!SI->isSimple())
|
|
|
|
return false;
|
|
|
|
SROAReduction += InlineConstants::InstrCost;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
|
|
// If the GEP has variable indices, we won't be able to do much with it.
|
|
|
|
if (!GEP->hasAllConstantIndices())
|
|
|
|
return false;
|
|
|
|
// A non-zero GEP will likely become a mask operation after SROA.
|
|
|
|
if (GEP->hasAllZeroIndices())
|
|
|
|
SROAReduction += InlineConstants::InstrCost;
|
|
|
|
Worklist.push_back(GEP);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
|
|
|
|
// Track pointer through bitcasts.
|
|
|
|
Worklist.push_back(BCI);
|
|
|
|
SROAReduction += InlineConstants::InstrCost;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We just look for non-constant operands to ICmp instructions as those will
|
|
|
|
// defeat SROA. The actual reduction for these happens even without SROA.
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
|
|
|
|
return isa<Constant>(ICI->getOperand(1));
|
|
|
|
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
|
|
// SROA can handle a select of alloca iff all uses of the alloca are
|
|
|
|
// loads, and dereferenceable. We assume it's dereferenceable since
|
|
|
|
// we're told the input is an alloca.
|
|
|
|
for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
|
|
|
|
UI != UE; ++UI) {
|
|
|
|
LoadInst *LI = dyn_cast<LoadInst>(*UI);
|
|
|
|
if (LI == 0 || !LI->isSimple())
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// We don't know whether we'll be deleting the rest of the chain of
|
|
|
|
// instructions from the SelectInst on, because we don't know whether
|
|
|
|
// the other side of the select is also an alloca or not.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
case Intrinsic::memset:
|
|
|
|
case Intrinsic::memcpy:
|
|
|
|
case Intrinsic::memmove:
|
|
|
|
case Intrinsic::lifetime_start:
|
|
|
|
case Intrinsic::lifetime_end:
|
|
|
|
// SROA can usually chew through these intrinsics.
|
|
|
|
SROAReduction += InlineConstants::InstrCost;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there is some other strange instruction, we're not going to be
|
|
|
|
// able to do much if we inline this.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2012-03-08 02:04:19 +00:00
|
|
|
unsigned InlineCostAnalyzer::FunctionInfo::countCodeReductionForAlloca(
|
|
|
|
const CodeMetrics &Metrics, Value *V) {
|
2010-09-09 16:56:42 +00:00
|
|
|
if (!V->getType()->isPointerTy()) return 0; // Not a pointer
|
|
|
|
unsigned Reduction = 0;
|
2012-03-09 02:49:36 +00:00
|
|
|
unsigned SROAReduction = 0;
|
|
|
|
bool CanSROAAlloca = true;
|
2012-01-25 08:27:40 +00:00
|
|
|
|
2012-01-20 08:35:20 +00:00
|
|
|
SmallVector<Value *, 4> Worklist;
|
|
|
|
Worklist.push_back(V);
|
|
|
|
do {
|
|
|
|
Value *V = Worklist.pop_back_val();
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
|
|
|
|
UI != E; ++UI){
|
|
|
|
Instruction *I = cast<Instruction>(*UI);
|
2012-03-09 02:49:36 +00:00
|
|
|
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
|
|
|
|
Reduction += countCodeReductionForAllocaICmp(Metrics, ICI);
|
|
|
|
|
|
|
|
if (CanSROAAlloca)
|
|
|
|
CanSROAAlloca = countCodeReductionForSROAInst(I, Worklist,
|
|
|
|
SROAReduction);
|
2010-09-09 16:56:42 +00:00
|
|
|
}
|
2012-01-20 08:35:20 +00:00
|
|
|
} while (!Worklist.empty());
|
2010-09-09 16:56:42 +00:00
|
|
|
|
2012-03-09 02:49:36 +00:00
|
|
|
return Reduction + (CanSROAAlloca ? SROAReduction : 0);
|
2010-09-09 16:56:42 +00:00
|
|
|
}
|
|
|
|
|
2012-03-14 23:19:53 +00:00
|
|
|
void InlineCostAnalyzer::FunctionInfo::countCodeReductionForPointerPair(
|
|
|
|
const CodeMetrics &Metrics, DenseMap<Value *, unsigned> &PointerArgs,
|
|
|
|
Value *V, unsigned ArgIdx) {
|
|
|
|
SmallVector<Value *, 4> Worklist;
|
|
|
|
Worklist.push_back(V);
|
|
|
|
do {
|
|
|
|
Value *V = Worklist.pop_back_val();
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
|
|
|
|
UI != E; ++UI){
|
|
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
|
|
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
|
|
// If the GEP has variable indices, we won't be able to do much with it.
|
|
|
|
if (!GEP->hasAllConstantIndices())
|
|
|
|
continue;
|
|
|
|
// Unless the GEP is in-bounds, some comparisons will be non-constant.
|
|
|
|
// Fortunately, the real-world cases where this occurs uses in-bounds
|
|
|
|
// GEPs, and so we restrict the optimization to them here.
|
|
|
|
if (!GEP->isInBounds())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Constant indices just change the constant offset. Add the resulting
|
|
|
|
// value both to our worklist for this argument, and to the set of
|
|
|
|
// viable paired values with future arguments.
|
|
|
|
PointerArgs[GEP] = ArgIdx;
|
|
|
|
Worklist.push_back(GEP);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Track pointer through casts. Even when the result is not a pointer, it
|
|
|
|
// remains a constant relative to constants derived from other constant
|
|
|
|
// pointers.
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
|
|
PointerArgs[CI] = ArgIdx;
|
|
|
|
Worklist.push_back(CI);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// There are two instructions which produce a strict constant value when
|
|
|
|
// applied to two related pointer values. Ignore everything else.
|
|
|
|
if (!isa<ICmpInst>(I) && I->getOpcode() != Instruction::Sub)
|
|
|
|
continue;
|
|
|
|
assert(I->getNumOperands() == 2);
|
|
|
|
|
|
|
|
// Ensure that the two operands are in our set of potentially paired
|
|
|
|
// pointers (or are derived from them).
|
|
|
|
Value *OtherArg = I->getOperand(0);
|
|
|
|
if (OtherArg == V)
|
|
|
|
OtherArg = I->getOperand(1);
|
|
|
|
DenseMap<Value *, unsigned>::const_iterator ArgIt
|
|
|
|
= PointerArgs.find(OtherArg);
|
|
|
|
if (ArgIt == PointerArgs.end())
|
|
|
|
continue;
|
2012-03-15 00:50:21 +00:00
|
|
|
std::pair<unsigned, unsigned> ArgPair(ArgIt->second, ArgIdx);
|
2012-03-15 00:55:51 +00:00
|
|
|
if (ArgPair.first > ArgPair.second)
|
2012-03-15 00:50:21 +00:00
|
|
|
std::swap(ArgPair.first, ArgPair.second);
|
2012-03-14 23:19:53 +00:00
|
|
|
|
2012-03-15 00:50:21 +00:00
|
|
|
PointerArgPairWeights[ArgPair]
|
2012-03-14 23:19:53 +00:00
|
|
|
+= countCodeReductionForConstant(Metrics, I);
|
|
|
|
}
|
|
|
|
} while (!Worklist.empty());
|
|
|
|
}
|
|
|
|
|
2009-10-13 19:58:07 +00:00
|
|
|
/// analyzeFunction - Fill in the current structure with information gleaned
|
|
|
|
/// from the specified function.
|
2011-10-01 01:39:05 +00:00
|
|
|
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F,
|
|
|
|
const TargetData *TD) {
|
|
|
|
Metrics.analyzeFunction(F, TD);
|
2009-10-13 18:30:07 +00:00
|
|
|
|
|
|
|
// A function with exactly one return has it removed during the inlining
|
|
|
|
// process (see InlineFunction), so don't count it.
|
2009-10-13 19:58:07 +00:00
|
|
|
// FIXME: This knowledge should really be encoded outside of FunctionInfo.
|
|
|
|
if (Metrics.NumRets==1)
|
|
|
|
--Metrics.NumInsts;
|
2009-10-13 18:30:07 +00:00
|
|
|
|
2010-01-26 21:31:24 +00:00
|
|
|
ArgumentWeights.reserve(F->arg_size());
|
2012-03-14 23:19:53 +00:00
|
|
|
DenseMap<Value *, unsigned> PointerArgs;
|
|
|
|
unsigned ArgIdx = 0;
|
|
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
|
|
++I, ++ArgIdx) {
|
|
|
|
// Count how much code can be eliminated if one of the arguments is
|
|
|
|
// a constant or an alloca.
|
2012-03-08 02:04:19 +00:00
|
|
|
ArgumentWeights.push_back(ArgInfo(countCodeReductionForConstant(Metrics, I),
|
|
|
|
countCodeReductionForAlloca(Metrics, I)));
|
2012-03-14 23:19:53 +00:00
|
|
|
|
|
|
|
// If the argument is a pointer, also check for pairs of pointers where
|
|
|
|
// knowing a fixed offset between them allows simplification. This pattern
|
|
|
|
// arises mostly due to STL algorithm patterns where pointers are used as
|
|
|
|
// random access iterators.
|
|
|
|
if (!I->getType()->isPointerTy())
|
|
|
|
continue;
|
|
|
|
PointerArgs[I] = ArgIdx;
|
|
|
|
countCodeReductionForPointerPair(Metrics, PointerArgs, I, ArgIdx);
|
|
|
|
}
|
2009-10-13 18:30:07 +00:00
|
|
|
}
|
|
|
|
|
2010-06-09 15:11:37 +00:00
|
|
|
/// NeverInline - returns true if the function should never be inlined into
|
|
|
|
/// any caller
|
2011-02-01 01:16:32 +00:00
|
|
|
bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
|
2011-12-18 20:35:43 +00:00
|
|
|
return (Metrics.exposesReturnsTwice || Metrics.isRecursive ||
|
2010-06-09 15:11:37 +00:00
|
|
|
Metrics.containsIndirectBr);
|
|
|
|
}
|
2010-10-09 22:06:36 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// ConstantFunctionBonus - Figure out how much of a bonus we can get for
|
|
|
|
// possibly devirtualizing a function. We'll subtract the size of the function
|
|
|
|
// we may wish to inline from the indirect call bonus providing a limit on
|
|
|
|
// growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
|
|
|
|
// inlining because we decide we don't want to give a bonus for
|
|
|
|
// devirtualizing.
|
|
|
|
int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) {
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// This could just be NULL.
|
|
|
|
if (!C) return 0;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
Function *F = dyn_cast<Function>(C);
|
|
|
|
if (!F) return 0;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F);
|
|
|
|
return (Bonus > 0) ? 0 : Bonus;
|
|
|
|
}
|
|
|
|
|
2011-02-01 01:16:32 +00:00
|
|
|
// CountBonusForConstant - Figure out an approximation for how much per-call
|
|
|
|
// performance boost we can expect if the specified value is constant.
|
2011-02-05 00:49:15 +00:00
|
|
|
int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) {
|
2011-02-01 01:16:32 +00:00
|
|
|
unsigned Bonus = 0;
|
|
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
|
|
User *U = *UI;
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
|
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
|
|
if (CI->getCalledValue() == V)
|
2011-02-05 00:49:15 +00:00
|
|
|
Bonus += ConstantFunctionBonus(CallSite(CI), C);
|
|
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
|
2011-02-01 01:16:32 +00:00
|
|
|
// Turning an indirect call into a direct call is a BIG win
|
|
|
|
if (II->getCalledValue() == V)
|
2011-02-05 02:48:47 +00:00
|
|
|
Bonus += ConstantFunctionBonus(CallSite(II), C);
|
2011-02-01 01:16:32 +00:00
|
|
|
}
|
|
|
|
// FIXME: Eliminating conditional branches and switches should
|
|
|
|
// also yield a per-call performance boost.
|
|
|
|
else {
|
|
|
|
// Figure out the bonuses that wll accrue due to simple constant
|
|
|
|
// propagation.
|
|
|
|
Instruction &Inst = cast<Instruction>(*U);
|
|
|
|
|
|
|
|
// We can't constant propagate instructions which have effects or
|
|
|
|
// read memory.
|
|
|
|
//
|
|
|
|
// FIXME: It would be nice to capture the fact that a load from a
|
|
|
|
// pointer-to-constant-global is actually a *really* good thing to zap.
|
|
|
|
// Unfortunately, we don't know the pointer that may get propagated here,
|
|
|
|
// so we can't make this decision.
|
|
|
|
if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
|
|
|
|
isa<AllocaInst>(Inst))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
bool AllOperandsConstant = true;
|
|
|
|
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
|
|
|
|
if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
|
|
|
|
AllOperandsConstant = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (AllOperandsConstant)
|
|
|
|
Bonus += CountBonusForConstant(&Inst);
|
|
|
|
}
|
|
|
|
}
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
return Bonus;
|
|
|
|
}
|
|
|
|
|
|
|
|
int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) {
|
|
|
|
// Get information about the callee.
|
|
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
2011-10-01 01:39:05 +00:00
|
|
|
CalleeFI->analyzeFunction(Callee, TD);
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
|
|
|
// be inlined. This value may go negative.
|
|
|
|
//
|
|
|
|
int InlineCost = 0;
|
|
|
|
|
|
|
|
// Compute any size reductions we can expect due to arguments being passed into
|
|
|
|
// the function.
|
|
|
|
//
|
|
|
|
unsigned ArgNo = 0;
|
|
|
|
CallSite::arg_iterator I = CS.arg_begin();
|
|
|
|
for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
|
|
|
|
FI != FE; ++I, ++FI, ++ArgNo) {
|
|
|
|
|
|
|
|
// If an alloca is passed in, inlining this function is likely to allow
|
|
|
|
// significant future optimization possibilities (like scalar promotion, and
|
|
|
|
// scalarization), so encourage the inlining of the function.
|
|
|
|
//
|
|
|
|
if (isa<AllocaInst>(I))
|
|
|
|
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
|
|
|
|
|
|
|
|
// If this is a constant being passed into the function, use the argument
|
|
|
|
// weights calculated for the callee to determine how much will be folded
|
|
|
|
// away with this information.
|
|
|
|
else if (isa<Constant>(I))
|
2011-10-01 01:27:56 +00:00
|
|
|
InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;
|
2011-02-05 00:49:15 +00:00
|
|
|
}
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2012-03-14 23:19:53 +00:00
|
|
|
const DenseMap<std::pair<unsigned, unsigned>, unsigned> &ArgPairWeights
|
|
|
|
= CalleeFI->PointerArgPairWeights;
|
|
|
|
for (DenseMap<std::pair<unsigned, unsigned>, unsigned>::const_iterator I
|
|
|
|
= ArgPairWeights.begin(), E = ArgPairWeights.end();
|
|
|
|
I != E; ++I)
|
|
|
|
if (CS.getArgument(I->first.first)->stripInBoundsConstantOffsets() ==
|
|
|
|
CS.getArgument(I->first.second)->stripInBoundsConstantOffsets())
|
|
|
|
InlineCost -= I->second;
|
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// Each argument passed in has a cost at both the caller and the callee
|
|
|
|
// sides. Measurements show that each argument costs about the same as an
|
|
|
|
// instruction.
|
|
|
|
InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
|
|
|
|
|
|
|
|
// Now that we have considered all of the factors that make the call site more
|
|
|
|
// likely to be inlined, look at factors that make us not want to inline it.
|
|
|
|
|
|
|
|
// Calls usually take a long time, so they make the inlining gain smaller.
|
|
|
|
InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
|
|
|
|
|
|
|
|
// Look at the size of the callee. Each instruction counts as 5.
|
2011-12-21 20:21:55 +00:00
|
|
|
InlineCost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
return InlineCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) {
|
|
|
|
// Get information about the callee.
|
|
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// If we haven't calculated this information yet, do so now.
|
|
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
2011-10-01 01:39:05 +00:00
|
|
|
CalleeFI->analyzeFunction(Callee, TD);
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
bool isDirectCall = CS.getCalledFunction() == Callee;
|
|
|
|
Instruction *TheCall = CS.getInstruction();
|
|
|
|
int Bonus = 0;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// If there is only one call of the function, and it has internal linkage,
|
|
|
|
// make it almost guaranteed to be inlined.
|
|
|
|
//
|
|
|
|
if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
|
|
|
|
Bonus += InlineConstants::LastCallToStaticBonus;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// If the instruction after the call, or if the normal destination of the
|
|
|
|
// invoke is an unreachable instruction, the function is noreturn. As such,
|
|
|
|
// there is little point in inlining this.
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
|
|
if (isa<UnreachableInst>(II->getNormalDest()->begin()))
|
|
|
|
Bonus += InlineConstants::NoreturnPenalty;
|
|
|
|
} else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
|
|
|
|
Bonus += InlineConstants::NoreturnPenalty;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// If this function uses the coldcc calling convention, prefer not to inline
|
|
|
|
// it.
|
|
|
|
if (Callee->getCallingConv() == CallingConv::Cold)
|
|
|
|
Bonus += InlineConstants::ColdccPenalty;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-05 00:49:15 +00:00
|
|
|
// Add to the inline quality for properties that make the call valuable to
|
|
|
|
// inline. This includes factors that indicate that the result of inlining
|
|
|
|
// the function will be optimizable. Currently this just looks at arguments
|
|
|
|
// passed into the function.
|
|
|
|
//
|
|
|
|
CallSite::arg_iterator I = CS.arg_begin();
|
|
|
|
for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
|
|
|
|
FI != FE; ++I, ++FI)
|
|
|
|
// Compute any constant bonus due to inlining we want to give here.
|
|
|
|
if (isa<Constant>(I))
|
|
|
|
Bonus += CountBonusForConstant(FI, cast<Constant>(I));
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2011-02-01 01:16:32 +00:00
|
|
|
return Bonus;
|
|
|
|
}
|
2010-10-09 22:06:36 +00:00
|
|
|
|
2009-10-13 18:30:07 +00:00
|
|
|
// getInlineCost - The heuristic used to determine if we should inline the
|
|
|
|
// function call or not.
|
|
|
|
//
|
|
|
|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
2010-04-17 17:55:00 +00:00
|
|
|
SmallPtrSet<const Function*, 16> &NeverInline) {
|
2010-05-01 15:47:41 +00:00
|
|
|
return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
|
|
|
|
}
|
|
|
|
|
|
|
|
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
|
|
|
|
Function *Callee,
|
|
|
|
SmallPtrSet<const Function*, 16> &NeverInline) {
|
2009-10-13 18:30:07 +00:00
|
|
|
Instruction *TheCall = CS.getInstruction();
|
|
|
|
Function *Caller = TheCall->getParent()->getParent();
|
|
|
|
|
|
|
|
// Don't inline functions which can be redefined at link-time to mean
|
2010-03-25 04:49:10 +00:00
|
|
|
// something else. Don't inline functions marked noinline or call sites
|
|
|
|
// marked noinline.
|
2009-10-13 18:30:07 +00:00
|
|
|
if (Callee->mayBeOverridden() ||
|
2010-03-25 04:49:10 +00:00
|
|
|
Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
|
|
|
|
CS.isNoInline())
|
2009-10-13 18:30:07 +00:00
|
|
|
return llvm::InlineCost::getNever();
|
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
// Get information about the callee.
|
|
|
|
FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2009-10-13 18:30:07 +00:00
|
|
|
// If we haven't calculated this information yet, do so now.
|
2010-04-17 17:55:00 +00:00
|
|
|
if (CalleeFI->Metrics.NumBlocks == 0)
|
2011-10-01 01:39:05 +00:00
|
|
|
CalleeFI->analyzeFunction(Callee, TD);
|
2009-10-13 18:30:07 +00:00
|
|
|
|
|
|
|
// If we should never inline this, return a huge cost.
|
2010-06-09 15:11:37 +00:00
|
|
|
if (CalleeFI->NeverInline())
|
2009-10-13 18:30:07 +00:00
|
|
|
return InlineCost::getNever();
|
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
// FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
|
2009-10-13 19:58:07 +00:00
|
|
|
// could move this up and avoid computing the FunctionInfo for
|
2009-10-13 18:30:07 +00:00
|
|
|
// things we are going to just return always inline for. This
|
|
|
|
// requires handling setjmp somewhere else, however.
|
|
|
|
if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
|
|
|
|
return InlineCost::getAlways();
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
if (CalleeFI->Metrics.usesDynamicAlloca) {
|
2011-04-15 05:18:47 +00:00
|
|
|
// Get information about the caller.
|
2009-10-13 19:58:07 +00:00
|
|
|
FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
|
2009-10-13 18:30:07 +00:00
|
|
|
|
|
|
|
// If we haven't calculated this information yet, do so now.
|
2010-04-17 17:57:56 +00:00
|
|
|
if (CallerFI.Metrics.NumBlocks == 0) {
|
2011-10-01 01:39:05 +00:00
|
|
|
CallerFI.analyzeFunction(Caller, TD);
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-04-17 17:57:56 +00:00
|
|
|
// Recompute the CalleeFI pointer, getting Caller could have invalidated
|
|
|
|
// it.
|
|
|
|
CalleeFI = &CachedFunctionInfo[Callee];
|
|
|
|
}
|
2009-10-13 18:30:07 +00:00
|
|
|
|
|
|
|
// Don't inline a callee with dynamic alloca into a caller without them.
|
|
|
|
// Functions containing dynamic alloca's are inefficient in various ways;
|
|
|
|
// don't create more inefficiency.
|
2009-10-13 19:58:07 +00:00
|
|
|
if (!CallerFI.Metrics.usesDynamicAlloca)
|
2009-10-13 18:30:07 +00:00
|
|
|
return InlineCost::getNever();
|
|
|
|
}
|
|
|
|
|
2011-01-25 01:34:31 +00:00
|
|
|
// InlineCost - This value measures how good of an inline candidate this call
|
|
|
|
// site is to inline. A lower inline cost make is more likely for the call to
|
2011-02-05 00:49:15 +00:00
|
|
|
// be inlined. This value may go negative due to the fact that bonuses
|
|
|
|
// are negative numbers.
|
2011-01-25 01:34:31 +00:00
|
|
|
//
|
2011-02-05 00:49:15 +00:00
|
|
|
int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee);
|
2009-10-13 18:30:07 +00:00
|
|
|
return llvm::InlineCost::get(InlineCost);
|
|
|
|
}
|
|
|
|
|
|
|
|
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
|
|
|
|
// higher threshold to determine if the function call should be inlined.
|
|
|
|
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
|
|
|
|
Function *Callee = CS.getCalledFunction();
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
// Get information about the callee.
|
2009-10-13 19:58:07 +00:00
|
|
|
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2009-10-13 18:30:07 +00:00
|
|
|
// If we haven't calculated this information yet, do so now.
|
2009-10-13 19:58:07 +00:00
|
|
|
if (CalleeFI.Metrics.NumBlocks == 0)
|
2011-10-01 01:39:05 +00:00
|
|
|
CalleeFI.analyzeFunction(Callee, TD);
|
2009-10-13 18:30:07 +00:00
|
|
|
|
|
|
|
float Factor = 1.0f;
|
|
|
|
// Single BB functions are often written to be inlined.
|
2009-10-13 19:58:07 +00:00
|
|
|
if (CalleeFI.Metrics.NumBlocks == 1)
|
2009-10-13 18:30:07 +00:00
|
|
|
Factor += 0.5f;
|
|
|
|
|
|
|
|
// Be more aggressive if the function contains a good chunk (if it mades up
|
|
|
|
// at least 10% of the instructions) of vector instructions.
|
2009-10-13 19:58:07 +00:00
|
|
|
if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
|
2009-10-13 18:30:07 +00:00
|
|
|
Factor += 2.0f;
|
2009-10-13 19:58:07 +00:00
|
|
|
else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
|
2009-10-13 18:30:07 +00:00
|
|
|
Factor += 1.5f;
|
|
|
|
return Factor;
|
|
|
|
}
|
2010-03-09 23:02:17 +00:00
|
|
|
|
|
|
|
/// growCachedCostInfo - update the cached cost info for Caller after Callee has
|
|
|
|
/// been inlined.
|
|
|
|
void
|
2010-04-17 17:55:00 +00:00
|
|
|
InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
|
|
|
|
CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
|
2010-03-09 23:02:17 +00:00
|
|
|
|
|
|
|
// For small functions we prefer to recalculate the cost for better accuracy.
|
2011-05-24 20:22:24 +00:00
|
|
|
if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) {
|
2010-03-09 23:02:17 +00:00
|
|
|
resetCachedCostInfo(Caller);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// For large functions, we can save a lot of computation time by skipping
|
|
|
|
// recalculations.
|
2010-04-17 17:55:00 +00:00
|
|
|
if (CallerMetrics.NumCalls > 0)
|
|
|
|
--CallerMetrics.NumCalls;
|
|
|
|
|
|
|
|
if (Callee == 0) return;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
|
|
|
|
|
|
|
|
// If we don't have metrics for the callee, don't recalculate them just to
|
|
|
|
// update an approximation in the caller. Instead, just recalculate the
|
|
|
|
// caller info from scratch.
|
|
|
|
if (CalleeMetrics.NumBlocks == 0) {
|
|
|
|
resetCachedCostInfo(Caller);
|
|
|
|
return;
|
2010-03-09 23:02:17 +00:00
|
|
|
}
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-04-17 17:57:56 +00:00
|
|
|
// Since CalleeMetrics were already calculated, we know that the CallerMetrics
|
2010-06-09 15:11:37 +00:00
|
|
|
// reference isn't invalidated: both were in the DenseMap.
|
2010-04-17 17:55:00 +00:00
|
|
|
CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
|
|
|
|
|
2010-06-09 15:11:37 +00:00
|
|
|
// FIXME: If any of these three are true for the callee, the callee was
|
|
|
|
// not inlined into the caller, so I think they're redundant here.
|
2011-12-18 20:35:43 +00:00
|
|
|
CallerMetrics.exposesReturnsTwice |= CalleeMetrics.exposesReturnsTwice;
|
2010-06-09 15:11:37 +00:00
|
|
|
CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
|
|
|
|
CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
|
|
|
|
|
2010-04-17 17:55:00 +00:00
|
|
|
CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
|
|
|
|
CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
|
|
|
|
CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
|
|
|
|
CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
|
|
|
|
CallerMetrics.NumRets += CalleeMetrics.NumRets;
|
|
|
|
|
|
|
|
// analyzeBasicBlock counts each function argument as an inst.
|
|
|
|
if (CallerMetrics.NumInsts >= Callee->arg_size())
|
|
|
|
CallerMetrics.NumInsts -= Callee->arg_size();
|
|
|
|
else
|
|
|
|
CallerMetrics.NumInsts = 0;
|
2011-10-01 01:27:56 +00:00
|
|
|
|
2010-05-12 21:48:15 +00:00
|
|
|
// We are not updating the argument weights. We have already determined that
|
2010-03-09 23:02:17 +00:00
|
|
|
// Caller is a fairly large function, so we accept the loss of precision.
|
|
|
|
}
|
2010-05-12 21:48:15 +00:00
|
|
|
|
|
|
|
/// clear - empty the cache of inline costs
|
|
|
|
void InlineCostAnalyzer::clear() {
|
|
|
|
CachedFunctionInfo.clear();
|
|
|
|
}
|