2006-05-11 23:55:42 +00:00
|
|
|
//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by Evan Cheng and is distributed under the
|
|
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements bottom-up and top-down register pressure reduction list
|
|
|
|
// schedulers, using standard algorithms. The basic approach uses a priority
|
|
|
|
// queue of available nodes to schedule. One at a time, nodes are taken from
|
|
|
|
// the priority queue (thus in priority order), checked for legality to
|
|
|
|
// schedule, and emitted if legal.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
|
|
#include "llvm/Target/MRegisterInfo.h"
|
2006-05-12 06:33:49 +00:00
|
|
|
#include "llvm/Target/TargetData.h"
|
2006-05-11 23:55:42 +00:00
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
#include <climits>
|
|
|
|
#include <iostream>
|
|
|
|
#include <queue>
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
2006-05-12 01:58:24 +00:00
|
|
|
cl::opt<bool> SchedCommuteNodes("sched-commute-nodes", cl::Hidden);
|
2006-05-11 23:55:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ScheduleDAGRRList - The actual register reduction list scheduler
|
|
|
|
/// implementation. This supports both top-down and bottom-up scheduling.
|
|
|
|
///
|
|
|
|
|
|
|
|
class ScheduleDAGRRList : public ScheduleDAG {
|
|
|
|
private:
|
|
|
|
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
|
|
|
|
/// it is top-down.
|
|
|
|
bool isBottomUp;
|
|
|
|
|
|
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
|
|
///
|
|
|
|
SchedulingPriorityQueue *AvailableQueue;
|
|
|
|
|
|
|
|
public:
|
|
|
|
ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
|
|
const TargetMachine &tm, bool isbottomup,
|
|
|
|
SchedulingPriorityQueue *availqueue)
|
|
|
|
: ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
|
|
|
|
AvailableQueue(availqueue) {
|
|
|
|
}
|
|
|
|
|
|
|
|
~ScheduleDAGRRList() {
|
|
|
|
delete AvailableQueue;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Schedule();
|
|
|
|
|
|
|
|
private:
|
|
|
|
void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
|
|
|
|
void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
|
|
|
|
void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle);
|
|
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle);
|
|
|
|
void ListScheduleTopDown();
|
|
|
|
void ListScheduleBottomUp();
|
2006-05-12 01:58:24 +00:00
|
|
|
void CommuteNodesToReducePressure();
|
2006-05-11 23:55:42 +00:00
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
|
|
void ScheduleDAGRRList::Schedule() {
|
|
|
|
DEBUG(std::cerr << "********** List Scheduling **********\n");
|
|
|
|
|
|
|
|
// Build scheduling units.
|
|
|
|
BuildSchedUnits();
|
|
|
|
|
|
|
|
CalculateDepths();
|
|
|
|
CalculateHeights();
|
|
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
|
|
SUnits[su].dumpAll(&DAG));
|
|
|
|
|
|
|
|
AvailableQueue->initNodes(SUnits);
|
|
|
|
|
|
|
|
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
|
|
|
|
if (isBottomUp)
|
|
|
|
ListScheduleBottomUp();
|
|
|
|
else
|
|
|
|
ListScheduleTopDown();
|
|
|
|
|
|
|
|
AvailableQueue->releaseState();
|
2006-05-12 01:58:24 +00:00
|
|
|
|
|
|
|
if (SchedCommuteNodes)
|
|
|
|
CommuteNodesToReducePressure();
|
2006-05-11 23:55:42 +00:00
|
|
|
|
|
|
|
DEBUG(std::cerr << "*** Final schedule ***\n");
|
|
|
|
DEBUG(dumpSchedule());
|
|
|
|
DEBUG(std::cerr << "\n");
|
|
|
|
|
|
|
|
// Emit in scheduled order
|
|
|
|
EmitSchedule();
|
|
|
|
}
|
|
|
|
|
2006-05-12 01:58:24 +00:00
|
|
|
/// CommuteNodesToReducePressure - Is a node is two-address and commutable, and
|
|
|
|
/// it is not the last use of its first operand, add it to the CommuteSet if
|
|
|
|
/// possible. It will be commuted when it is translated to a MI.
|
|
|
|
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
|
|
|
std::set<SUnit *> OperandSeen;
|
|
|
|
for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node.
|
|
|
|
SUnit *SU = Sequence[i];
|
|
|
|
if (!SU) continue;
|
|
|
|
if (SU->isTwoAddress && SU->isCommutable) {
|
|
|
|
SDNode *OpN = SU->Node->getOperand(0).Val;
|
|
|
|
SUnit *OpSU = SUnitMap[OpN];
|
|
|
|
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
|
|
|
// Ok, so SU is not the last use of OpSU, but SU is two-address so
|
|
|
|
// it will clobber OpSU. Try to commute it if possible.
|
|
|
|
bool DoCommute = true;
|
|
|
|
for (unsigned j = 1, e = SU->Node->getNumOperands(); j != e; ++j) {
|
|
|
|
OpN = SU->Node->getOperand(j).Val;
|
|
|
|
OpSU = SUnitMap[OpN];
|
|
|
|
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
|
|
|
DoCommute = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (DoCommute)
|
|
|
|
CommuteSet.insert(SU->Node);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
|
|
|
|
E = SU->Preds.end(); I != E; ++I) {
|
|
|
|
if (!I->second)
|
|
|
|
OperandSeen.insert(I->first);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-05-11 23:55:42 +00:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Bottom-Up Scheduling
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static const TargetRegisterClass *getRegClass(SUnit *SU,
|
|
|
|
const TargetInstrInfo *TII,
|
|
|
|
const MRegisterInfo *MRI,
|
|
|
|
SSARegMap *RegMap) {
|
|
|
|
if (SU->Node->isTargetOpcode()) {
|
|
|
|
unsigned Opc = SU->Node->getTargetOpcode();
|
|
|
|
const TargetInstrDescriptor &II = TII->get(Opc);
|
|
|
|
return II.OpInfo->RegClass;
|
|
|
|
} else {
|
|
|
|
assert(SU->Node->getOpcode() == ISD::CopyFromReg);
|
|
|
|
unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
|
|
|
|
if (MRegisterInfo::isVirtualRegister(SrcReg))
|
|
|
|
return RegMap->getRegClass(SrcReg);
|
|
|
|
else {
|
|
|
|
for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
|
|
|
|
E = MRI->regclass_end(); I != E; ++I)
|
|
|
|
if ((*I)->hasType(SU->Node->getValueType(0)) &&
|
|
|
|
(*I)->contains(SrcReg))
|
|
|
|
return *I;
|
|
|
|
assert(false && "Couldn't find register class for reg copy!");
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned getNumResults(SUnit *SU) {
|
|
|
|
unsigned NumResults = 0;
|
|
|
|
for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
|
|
|
|
MVT::ValueType VT = SU->Node->getValueType(i);
|
|
|
|
if (VT != MVT::Other && VT != MVT::Flag)
|
|
|
|
NumResults++;
|
|
|
|
}
|
|
|
|
return NumResults;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
|
|
|
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
|
|
|
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
|
|
|
|
unsigned CurCycle) {
|
|
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
|
|
// latency. For example, the reader can very well read the register written
|
|
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
|
|
// interrupt model (drain vs. freeze).
|
|
|
|
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
|
|
|
|
|
|
|
|
if (!isChain)
|
|
|
|
PredSU->NumSuccsLeft--;
|
|
|
|
else
|
|
|
|
PredSU->NumChainSuccsLeft--;
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
|
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
|
|
PredSU->dump(&DAG);
|
|
|
|
std::cerr << " has been released too many times!\n";
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
|
|
|
|
// EntryToken has to go last! Special case it here.
|
|
|
|
if (PredSU->Node->getOpcode() != ISD::EntryToken) {
|
|
|
|
PredSU->isAvailable = true;
|
|
|
|
AvailableQueue->push(PredSU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
|
|
|
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
|
|
|
/// the Available queue.
|
|
|
|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) {
|
|
|
|
DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
|
|
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
SU->Cycle = CurCycle;
|
|
|
|
|
|
|
|
AvailableQueue->ScheduledNode(SU);
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
|
|
|
|
// Bottom up: release predecessors
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
|
|
|
|
E = SU->Preds.end(); I != E; ++I)
|
|
|
|
ReleasePred(I->first, I->second, CurCycle);
|
|
|
|
SU->isScheduled = true;
|
|
|
|
CurCycle++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// isReady - True if node's lower cycle bound is less or equal to the current
|
|
|
|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
|
|
|
static inline bool isReady(SUnit *SU, unsigned CurCycle) {
|
|
|
|
return SU->CycleBound <= CurCycle;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
|
|
|
/// schedulers.
|
|
|
|
void ScheduleDAGRRList::ListScheduleBottomUp() {
|
|
|
|
unsigned CurCycle = 0;
|
|
|
|
// Add root to Available queue.
|
|
|
|
AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
|
|
|
|
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
|
|
std::vector<SUnit*> NotReady;
|
|
|
|
SUnit *CurNode = NULL;
|
|
|
|
while (!AvailableQueue->empty()) {
|
|
|
|
SUnit *CurNode = AvailableQueue->pop();
|
|
|
|
while (!isReady(CurNode, CurCycle)) {
|
|
|
|
NotReady.push_back(CurNode);
|
|
|
|
CurNode = AvailableQueue->pop();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
|
|
AvailableQueue->push_all(NotReady);
|
|
|
|
NotReady.clear();
|
|
|
|
|
|
|
|
ScheduleNodeBottomUp(CurNode, CurCycle);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add entry node last
|
|
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
|
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
|
|
Sequence.push_back(Entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reverse the order if it is bottom up.
|
|
|
|
std::reverse(Sequence.begin(), Sequence.end());
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Verify that all SUnits were scheduled.
|
|
|
|
bool AnyNotSched = false;
|
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
|
|
if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
|
|
|
|
if (!AnyNotSched)
|
|
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(&DAG);
|
|
|
|
std::cerr << "has not been scheduled!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(!AnyNotSched);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Top-Down Scheduling
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
|
|
/// the PendingQueue if the count reaches zero.
|
|
|
|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
|
|
|
|
unsigned CurCycle) {
|
|
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
|
|
// latency. For example, the reader can very well read the register written
|
|
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
|
|
// interrupt model (drain vs. freeze).
|
|
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
|
|
|
|
|
|
|
|
if (!isChain)
|
|
|
|
SuccSU->NumPredsLeft--;
|
|
|
|
else
|
|
|
|
SuccSU->NumChainPredsLeft--;
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
|
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
|
|
SuccSU->dump(&DAG);
|
|
|
|
std::cerr << " has been released too many times!\n";
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
|
|
|
|
SuccSU->isAvailable = true;
|
|
|
|
AvailableQueue->push(SuccSU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
|
|
/// the Available queue.
|
|
|
|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) {
|
|
|
|
DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
|
|
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
SU->Cycle = CurCycle;
|
|
|
|
|
|
|
|
AvailableQueue->ScheduledNode(SU);
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
|
|
|
|
// Top down: release successors
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
|
|
|
|
E = SU->Succs.end(); I != E; ++I)
|
|
|
|
ReleaseSucc(I->first, I->second, CurCycle);
|
|
|
|
SU->isScheduled = true;
|
|
|
|
CurCycle++;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScheduleDAGRRList::ListScheduleTopDown() {
|
|
|
|
unsigned CurCycle = 0;
|
|
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
|
|
|
|
|
|
// All leaves to Available queue.
|
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
|
|
// It is available if it has no predecessors.
|
|
|
|
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
|
|
|
|
AvailableQueue->push(&SUnits[i]);
|
|
|
|
SUnits[i].isAvailable = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Emit the entry node first.
|
|
|
|
ScheduleNodeTopDown(Entry, CurCycle);
|
|
|
|
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
|
|
std::vector<SUnit*> NotReady;
|
|
|
|
SUnit *CurNode = NULL;
|
|
|
|
while (!AvailableQueue->empty()) {
|
|
|
|
SUnit *CurNode = AvailableQueue->pop();
|
|
|
|
while (!isReady(CurNode, CurCycle)) {
|
|
|
|
NotReady.push_back(CurNode);
|
|
|
|
CurNode = AvailableQueue->pop();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
|
|
AvailableQueue->push_all(NotReady);
|
|
|
|
NotReady.clear();
|
|
|
|
|
|
|
|
ScheduleNodeTopDown(CurNode, CurCycle);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Verify that all SUnits were scheduled.
|
|
|
|
bool AnyNotSched = false;
|
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
|
|
if (!SUnits[i].isScheduled) {
|
|
|
|
if (!AnyNotSched)
|
|
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(&DAG);
|
|
|
|
std::cerr << "has not been scheduled!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(!AnyNotSched);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// RegReductionPriorityQueue Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
|
|
|
|
// to reduce register pressure.
|
|
|
|
//
|
|
|
|
namespace {
|
|
|
|
template<class SF>
|
|
|
|
class RegReductionPriorityQueue;
|
|
|
|
|
|
|
|
/// Sorting functions for the Available queue.
|
|
|
|
struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
|
|
RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
|
|
|
|
bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
|
|
|
|
bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
|
|
RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
|
|
|
|
td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
|
|
|
|
td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
template<class SF>
|
|
|
|
class RegReductionPriorityQueue : public SchedulingPriorityQueue {
|
|
|
|
std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
|
|
|
|
|
|
|
|
public:
|
|
|
|
RegReductionPriorityQueue() :
|
|
|
|
Queue(SF(this)) {}
|
|
|
|
|
|
|
|
virtual void initNodes(const std::vector<SUnit> &sunits) {}
|
|
|
|
virtual void releaseState() {}
|
|
|
|
|
|
|
|
virtual int getSethiUllmanNumber(unsigned NodeNum) const {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
|
|
|
|
void push(SUnit *U) {
|
|
|
|
Queue.push(U);
|
|
|
|
}
|
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
|
|
Queue.push(Nodes[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
SUnit *pop() {
|
|
|
|
SUnit *V = Queue.top();
|
|
|
|
Queue.pop();
|
|
|
|
return V;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class SF>
|
|
|
|
class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
|
|
|
|
// SUnits - The SUnits for the current graph.
|
|
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
|
|
std::vector<int> SethiUllmanNumbers;
|
|
|
|
|
|
|
|
public:
|
|
|
|
BURegReductionPriorityQueue() {}
|
|
|
|
|
|
|
|
void initNodes(const std::vector<SUnit> &sunits) {
|
|
|
|
SUnits = &sunits;
|
|
|
|
// Add pseudo dependency edges for two-address nodes.
|
2006-05-12 01:58:24 +00:00
|
|
|
AddPseudoTwoAddrDeps();
|
2006-05-11 23:55:42 +00:00
|
|
|
// Calculate node priorities.
|
|
|
|
CalculatePriorities();
|
|
|
|
}
|
|
|
|
|
|
|
|
void releaseState() {
|
|
|
|
SUnits = 0;
|
|
|
|
SethiUllmanNumbers.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
int getSethiUllmanNumber(unsigned NodeNum) const {
|
|
|
|
assert(NodeNum < SethiUllmanNumbers.size());
|
|
|
|
return SethiUllmanNumbers[NodeNum];
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void AddPseudoTwoAddrDeps();
|
|
|
|
void CalculatePriorities();
|
|
|
|
int CalcNodePriority(const SUnit *SU);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template<class SF>
|
|
|
|
class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
|
|
|
|
// SUnits - The SUnits for the current graph.
|
|
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
|
|
std::vector<int> SethiUllmanNumbers;
|
|
|
|
|
|
|
|
public:
|
|
|
|
TDRegReductionPriorityQueue() {}
|
|
|
|
|
|
|
|
void initNodes(const std::vector<SUnit> &sunits) {
|
|
|
|
SUnits = &sunits;
|
|
|
|
// Calculate node priorities.
|
|
|
|
CalculatePriorities();
|
|
|
|
}
|
|
|
|
|
|
|
|
void releaseState() {
|
|
|
|
SUnits = 0;
|
|
|
|
SethiUllmanNumbers.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
int getSethiUllmanNumber(unsigned NodeNum) const {
|
|
|
|
assert(NodeNum < SethiUllmanNumbers.size());
|
|
|
|
return SethiUllmanNumbers[NodeNum];
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void CalculatePriorities();
|
|
|
|
int CalcNodePriority(const SUnit *SU);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bottom up
|
|
|
|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
|
|
unsigned LeftNum = left->NodeNum;
|
|
|
|
unsigned RightNum = right->NodeNum;
|
|
|
|
bool LIsTarget = left->Node->isTargetOpcode();
|
|
|
|
bool RIsTarget = right->Node->isTargetOpcode();
|
|
|
|
int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
|
|
|
|
int RPriority = SPQ->getSethiUllmanNumber(RightNum);
|
|
|
|
bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
|
|
|
|
bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
|
|
|
|
int LBonus = 0;
|
|
|
|
int RBonus = 0;
|
|
|
|
|
|
|
|
// Schedule floaters (e.g. load from some constant address) and those nodes
|
|
|
|
// with a single predecessor each first. They maintain / reduce register
|
|
|
|
// pressure.
|
|
|
|
if (LIsFloater)
|
|
|
|
LBonus += 2;
|
|
|
|
if (RIsFloater)
|
|
|
|
RBonus += 2;
|
|
|
|
|
|
|
|
if (LPriority+LBonus < RPriority+RBonus)
|
|
|
|
return true;
|
|
|
|
else if (LPriority+LBonus == RPriority+RBonus)
|
|
|
|
if (left->NumPredsLeft > right->NumPredsLeft)
|
|
|
|
return true;
|
|
|
|
else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
|
|
|
|
if (left->CycleBound > right->CycleBound)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool isCopyFromLiveIn(const SUnit *SU) {
|
|
|
|
SDNode *N = SU->Node;
|
|
|
|
return N->getOpcode() == ISD::CopyFromReg &&
|
|
|
|
N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: This is probably too slow!
|
|
|
|
static void isReachable(SUnit *SU, SUnit *TargetSU,
|
|
|
|
std::set<SUnit *> &Visited, bool &Reached) {
|
|
|
|
if (Reached) return;
|
|
|
|
if (SU == TargetSU) {
|
|
|
|
Reached = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!Visited.insert(SU).second) return;
|
|
|
|
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
|
|
|
|
E = SU->Preds.end(); I != E; ++I)
|
|
|
|
isReachable(I->first, TargetSU, Visited, Reached);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isReachable(SUnit *SU, SUnit *TargetSU) {
|
|
|
|
std::set<SUnit *> Visited;
|
|
|
|
bool Reached = false;
|
|
|
|
isReachable(SU, TargetSU, Visited, Reached);
|
|
|
|
return Reached;
|
|
|
|
}
|
|
|
|
|
|
|
|
static SUnit *getDefUsePredecessor(SUnit *SU) {
|
|
|
|
SDNode *DU = SU->Node->getOperand(0).Val;
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator
|
|
|
|
I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
|
|
|
|
if (I->second) continue; // ignore chain preds
|
|
|
|
SUnit *PredSU = I->first;
|
|
|
|
if (PredSU->Node == DU)
|
|
|
|
return PredSU;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Must be flagged.
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool canClobber(SUnit *SU, SUnit *Op) {
|
|
|
|
if (SU->isTwoAddress)
|
|
|
|
return Op == getDefUsePredecessor(SU);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
|
|
|
|
/// it as a def&use operand. Add a pseudo control edge from it to the other
|
|
|
|
/// node (if it won't create a cycle) so the two-address one will be scheduled
|
|
|
|
/// first (lower in the schedule).
|
|
|
|
template<class SF>
|
|
|
|
void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
|
|
|
|
SUnit *SU = (SUnit *)&((*SUnits)[i]);
|
|
|
|
SDNode *Node = SU->Node;
|
|
|
|
if (!Node->isTargetOpcode())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (SU->isTwoAddress) {
|
|
|
|
SUnit *DUSU = getDefUsePredecessor(SU);
|
|
|
|
if (!DUSU) continue;
|
|
|
|
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
|
|
|
|
E = DUSU->Succs.end(); I != E; ++I) {
|
2006-05-12 01:58:24 +00:00
|
|
|
if (I->second) continue;
|
2006-05-11 23:55:42 +00:00
|
|
|
SUnit *SuccSU = I->first;
|
2006-05-12 01:58:24 +00:00
|
|
|
if (SuccSU != SU &&
|
|
|
|
(!canClobber(SuccSU, DUSU) ||
|
|
|
|
(SchedCommuteNodes && !SU->isCommutable && SuccSU->isCommutable))){
|
|
|
|
if (SuccSU->Depth <= SU->Depth+2 && !isReachable(SuccSU, SU)) {
|
2006-05-11 23:55:42 +00:00
|
|
|
DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
|
|
|
|
<< " to SU #" << SuccSU->NodeNum << "\n");
|
|
|
|
if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
|
|
|
|
SU->NumChainPredsLeft++;
|
|
|
|
if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
|
|
|
|
SuccSU->NumChainSuccsLeft++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
|
|
|
/// Smaller number is the higher priority.
|
|
|
|
template<class SF>
|
|
|
|
int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
|
|
|
|
int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
|
|
|
|
if (SethiUllmanNumber != 0)
|
|
|
|
return SethiUllmanNumber;
|
|
|
|
|
|
|
|
unsigned Opc = SU->Node->getOpcode();
|
|
|
|
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
|
|
|
|
SethiUllmanNumber = INT_MAX - 10;
|
|
|
|
else if (SU->NumSuccsLeft == 0)
|
|
|
|
// If SU does not have a use, i.e. it doesn't produce a value that would
|
|
|
|
// be consumed (e.g. store), then it terminates a chain of computation.
|
|
|
|
// Give it a small SethiUllman number so it will be scheduled right before its
|
|
|
|
// predecessors that it doesn't lengthen their live ranges.
|
|
|
|
SethiUllmanNumber = INT_MIN + 10;
|
|
|
|
else if (SU->NumPredsLeft == 0 &&
|
|
|
|
(Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
|
|
|
|
SethiUllmanNumber = 1;
|
|
|
|
else {
|
|
|
|
int Extra = 0;
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::const_iterator
|
|
|
|
I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
|
|
|
|
if (I->second) continue; // ignore chain preds
|
|
|
|
SUnit *PredSU = I->first;
|
|
|
|
int PredSethiUllman = CalcNodePriority(PredSU);
|
|
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
|
|
Extra = 0;
|
|
|
|
} else if (PredSethiUllman == SethiUllmanNumber && !I->second)
|
|
|
|
Extra++;
|
|
|
|
}
|
|
|
|
|
|
|
|
SethiUllmanNumber += Extra;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SethiUllmanNumber;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
|
|
template<class SF>
|
|
|
|
void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
|
|
|
|
SethiUllmanNumbers.assign(SUnits->size(), 0);
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
|
|
CalcNodePriority(&(*SUnits)[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
|
|
|
|
unsigned Sum = 0;
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::const_iterator
|
|
|
|
I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) {
|
|
|
|
SUnit *SuccSU = I->first;
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::const_iterator
|
|
|
|
II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) {
|
|
|
|
SUnit *PredSU = II->first;
|
|
|
|
if (!PredSU->isScheduled)
|
|
|
|
Sum++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Top down
|
|
|
|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
|
|
unsigned LeftNum = left->NodeNum;
|
|
|
|
unsigned RightNum = right->NodeNum;
|
|
|
|
int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
|
|
|
|
int RPriority = SPQ->getSethiUllmanNumber(RightNum);
|
|
|
|
bool LIsTarget = left->Node->isTargetOpcode();
|
|
|
|
bool RIsTarget = right->Node->isTargetOpcode();
|
|
|
|
bool LIsFloater = LIsTarget && left->NumPreds == 0;
|
|
|
|
bool RIsFloater = RIsTarget && right->NumPreds == 0;
|
|
|
|
unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
|
|
|
|
unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
|
|
|
|
|
|
|
|
if (left->NumSuccs == 0 && right->NumSuccs != 0)
|
|
|
|
return false;
|
|
|
|
else if (left->NumSuccs != 0 && right->NumSuccs == 0)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Special tie breaker: if two nodes share a operand, the one that use it
|
|
|
|
// as a def&use operand is preferred.
|
|
|
|
if (LIsTarget && RIsTarget) {
|
|
|
|
if (left->isTwoAddress && !right->isTwoAddress) {
|
|
|
|
SDNode *DUNode = left->Node->getOperand(0).Val;
|
|
|
|
if (DUNode->isOperand(right->Node))
|
|
|
|
RBonus += 2;
|
|
|
|
}
|
|
|
|
if (!left->isTwoAddress && right->isTwoAddress) {
|
|
|
|
SDNode *DUNode = right->Node->getOperand(0).Val;
|
|
|
|
if (DUNode->isOperand(left->Node))
|
|
|
|
LBonus += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (LIsFloater)
|
|
|
|
LBonus -= 2;
|
|
|
|
if (RIsFloater)
|
|
|
|
RBonus -= 2;
|
|
|
|
if (left->NumSuccs == 1)
|
|
|
|
LBonus += 2;
|
|
|
|
if (right->NumSuccs == 1)
|
|
|
|
RBonus += 2;
|
|
|
|
|
|
|
|
if (LPriority+LBonus < RPriority+RBonus)
|
|
|
|
return true;
|
|
|
|
else if (LPriority == RPriority)
|
|
|
|
if (left->Depth < right->Depth)
|
|
|
|
return true;
|
|
|
|
else if (left->Depth == right->Depth)
|
|
|
|
if (left->NumSuccsLeft > right->NumSuccsLeft)
|
|
|
|
return true;
|
|
|
|
else if (left->NumSuccsLeft == right->NumSuccsLeft)
|
|
|
|
if (left->CycleBound > right->CycleBound)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
|
|
|
/// Smaller number is the higher priority.
|
|
|
|
template<class SF>
|
|
|
|
int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
|
|
|
|
int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
|
|
|
|
if (SethiUllmanNumber != 0)
|
|
|
|
return SethiUllmanNumber;
|
|
|
|
|
|
|
|
unsigned Opc = SU->Node->getOpcode();
|
|
|
|
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
|
|
|
|
SethiUllmanNumber = INT_MAX - 10;
|
|
|
|
else if (SU->NumSuccsLeft == 0)
|
|
|
|
// If SU does not have a use, i.e. it doesn't produce a value that would
|
|
|
|
// be consumed (e.g. store), then it terminates a chain of computation.
|
|
|
|
// Give it a small SethiUllman number so it will be scheduled right before its
|
|
|
|
// predecessors that it doesn't lengthen their live ranges.
|
|
|
|
SethiUllmanNumber = INT_MIN + 10;
|
|
|
|
else if (SU->NumPredsLeft == 0 &&
|
|
|
|
(Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
|
|
|
|
SethiUllmanNumber = 1;
|
|
|
|
else {
|
|
|
|
int Extra = 0;
|
|
|
|
for (std::set<std::pair<SUnit*, bool> >::const_iterator
|
|
|
|
I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
|
|
|
|
if (I->second) continue; // ignore chain preds
|
|
|
|
SUnit *PredSU = I->first;
|
|
|
|
int PredSethiUllman = CalcNodePriority(PredSU);
|
|
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
|
|
Extra = 0;
|
|
|
|
} else if (PredSethiUllman == SethiUllmanNumber && !I->second)
|
|
|
|
Extra++;
|
|
|
|
}
|
|
|
|
|
|
|
|
SethiUllmanNumber += Extra;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SethiUllmanNumber;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
|
|
template<class SF>
|
|
|
|
void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
|
|
|
|
SethiUllmanNumbers.assign(SUnits->size(), 0);
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
|
|
CalcNodePriority(&(*SUnits)[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Public Constructor Functions
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
|
|
|
|
MachineBasicBlock *BB) {
|
|
|
|
return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true,
|
|
|
|
new BURegReductionPriorityQueue<bu_ls_rr_sort>());
|
|
|
|
}
|
|
|
|
|
|
|
|
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG,
|
|
|
|
MachineBasicBlock *BB) {
|
|
|
|
return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false,
|
|
|
|
new TDRegReductionPriorityQueue<td_ls_rr_sort>());
|
|
|
|
}
|
|
|
|
|