llvm-6502/lib/CodeGen/LiveInterval.cpp

518 lines
17 KiB
C++
Raw Normal View History

//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' > j
// such that v is live at j' abd there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Streams.h"
#include "llvm/Target/MRegisterInfo.h"
#include <algorithm>
#include <map>
#include <ostream>
using namespace llvm;
// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining this
// spans slots [0,3]. The interval belongs to an spilled definition of the
// variable it represents. This is because slot 1 is used (def slot) and spans
// up to slot 3 (store slot).
//
bool LiveInterval::liveAt(unsigned I) const {
Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I);
if (r == ranges.begin())
return false;
--r;
return r->contains(I);
}
// overlaps - Return true if the intersection of the two live intervals is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveInterval::overlapsFrom(const LiveInterval& other,
const_iterator StartPos) const {
const_iterator i = begin();
const_iterator ie = end();
const_iterator j = StartPos;
const_iterator je = other.end();
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
StartPos != other.end() && "Bogus start position hint!");
This patch makes use of the infrastructure implemented before to safely and aggressively coallesce live ranges even if they overlap. Consider this LLVM code for example: int %test(int %X) { %Y = mul int %X, 1 ;; Codegens to Y = X %Z = add int %X, %Y ret int %Z } The mul is just there to get a copy into the code stream. This produces this machine code: (0x869e5a8, LLVM BB @0x869b9a0): %reg1024 = mov <fi#-2>, 1, %NOREG, 0 ;; "X" %reg1025 = mov %reg1024 ;; "Y" (subsumed by X) %reg1026 = add %reg1024, %reg1025 %EAX = mov %reg1026 ret Note that the life times of reg1024 and reg1025 overlap, even though they contain the same value. This results in this machine code: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, %EAX add %EAX, %ECX ret Another, worse case involves loops and PHI nodes. Consider this trivial loop: testcase: int %test2(int %X) { entry: br label %Loop Loop: %Y = phi int [%X, %entry], [%Z, %Loop] %Z = add int %Y, 1 %cond = seteq int %Z, 100 br bool %cond, label %Out, label %Loop Out: ret int %Z } Because of interactions between the PHI elimination pass and the register allocator, this got compiled to this code: test2: mov %ECX, DWORD PTR [%ESP + 4] .LBBtest2_1: *** mov %EAX, %ECX inc %EAX cmp %EAX, 100 *** mov %ECX, %EAX jne .LBBtest2_1 ret Or on powerpc, this code: _test2: mflr r0 stw r0, 8(r1) stwu r1, -60(r1) .LBB_test2_1: addi r2, r3, 1 cmpwi cr0, r2, 100 *** or r3, r2, r2 bne cr0, .LBB_test2_1 *** or r3, r2, r2 lwz r0, 68(r1) mtlr r0 addi r1, r1, 60 blr 0 With this improvement in place, we now generate this code for these two testcases, which is what we want: test: mov %EAX, DWORD PTR [%ESP + 4] add %EAX, %EAX ret test2: mov %EAX, DWORD PTR [%ESP + 4] .LBBtest2_1: inc %EAX cmp %EAX, 100 jne .LBBtest2_1 # Loop ret Or on PPC: _test2: mflr r0 stw r0, 8(r1) stwu r1, -60(r1) .LBB_test2_1: addi r3, r3, 1 cmpwi cr0, r3, 100 bne cr0, .LBB_test2_1 lwz r0, 68(r1) mtlr r0 addi r1, r1, 60 blr 0 Static numbers for spill code loads/stores/reg-reg copies (smaller is better): em3d: before: 47/25/26 after: 44/22/24 164.gzip: before: 433/245/310 after: 403/231/278 175.vpr: before: 3721/2189/1581 after: 4144/2081/1423 176.gcc: before: 26195/8866/9235 after: 25942/8082/8275 186.crafty: before: 4295/2587/3079 after: 4119/2519/2916 252.eon: before: 12754/7585/5803 after: 12508/7425/5643 256.bzip2: before: 463/226/315 after: 482:241/309 Runtime perf number samples on X86: gzip: before: 41.09 after: 39.86 bzip2: runtime: before: 56.71s after: 57.07s gcc: before: 6.16 after: 6.12 eon: before: 2.03s after: 2.00s git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15194 91177308-0d34-0410-b5e6-96231b3b80d8
2004-07-25 07:11:19 +00:00
if (i->start < j->start) {
i = std::upper_bound(i, ie, j->start);
if (i != ranges.begin()) --i;
} else if (j->start < i->start) {
++StartPos;
if (StartPos != other.end() && StartPos->start <= i->start) {
assert(StartPos < other.end() && i < end());
j = std::upper_bound(j, je, i->start);
if (j != other.ranges.begin()) --j;
}
} else {
return true;
}
if (j == je) return false;
while (i != ie) {
if (i->start > j->start) {
std::swap(i, j);
std::swap(ie, je);
}
if (i->end > j->start)
return true;
++i;
}
return false;
}
/// extendIntervalEndTo - This method is used when we want to extend the range
/// specified by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with. The iterator is
/// not invalidated.
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
assert(I != ranges.end() && "Not a valid interval!");
unsigned ValId = I->ValId;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = next(I);
for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
assert(MergeTo->ValId == ValId && "Cannot merge with differing values!");
}
// If NewEnd was in the middle of an interval, make sure to get its endpoint.
I->end = std::max(NewEnd, prior(MergeTo)->end);
// Erase any dead ranges.
ranges.erase(next(I), MergeTo);
// If the newly formed range now touches the range after it and if they have
// the same value number, merge the two ranges into one range.
Ranges::iterator Next = next(I);
if (Next != ranges.end() && Next->start <= I->end && Next->ValId == ValId) {
I->end = Next->end;
ranges.erase(Next);
}
}
/// extendIntervalStartTo - This method is used when we want to extend the range
/// specified by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with.
LiveInterval::Ranges::iterator
LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) {
assert(I != ranges.end() && "Not a valid interval!");
unsigned ValId = I->ValId;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = I;
do {
if (MergeTo == ranges.begin()) {
I->start = NewStart;
ranges.erase(MergeTo, I);
return I;
}
assert(MergeTo->ValId == ValId && "Cannot merge with differing values!");
--MergeTo;
} while (NewStart <= MergeTo->start);
// If we start in the middle of another interval, just delete a range and
// extend that interval.
if (MergeTo->end >= NewStart && MergeTo->ValId == ValId) {
MergeTo->end = I->end;
} else {
// Otherwise, extend the interval right after.
++MergeTo;
MergeTo->start = NewStart;
MergeTo->end = I->end;
}
ranges.erase(next(MergeTo), next(I));
return MergeTo;
}
LiveInterval::iterator
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
unsigned Start = LR.start, End = LR.end;
iterator it = std::upper_bound(From, ranges.end(), Start);
// If the inserted interval starts in the middle or right at the end of
// another interval, just extend that interval to contain the range of LR.
if (it != ranges.begin()) {
iterator B = prior(it);
if (LR.ValId == B->ValId) {
if (B->start <= Start && B->end >= Start) {
extendIntervalEndTo(B, End);
return B;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different ValId's.
assert(B->end <= Start &&
"Cannot overlap two LiveRanges with differing ValID's"
" (did you def the same reg twice in a MachineInstr?)");
}
}
// Otherwise, if this range ends in the middle of, or right next to, another
// interval, merge it into that interval.
if (it != ranges.end())
if (LR.ValId == it->ValId) {
if (it->start <= End) {
it = extendIntervalStartTo(it, Start);
// If LR is a complete superset of an interval, we may need to grow its
// endpoint as well.
if (End > it->end)
extendIntervalEndTo(it, End);
return it;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different ValId's.
assert(it->start >= End &&
"Cannot overlap two LiveRanges with differing ValID's");
}
// Otherwise, this is just a new range that doesn't interact with anything.
// Insert it.
return ranges.insert(it, LR);
}
/// removeRange - Remove the specified range from this interval. Note that
/// the range must already be in this interval in its entirety.
void LiveInterval::removeRange(unsigned Start, unsigned End) {
// Find the LiveRange containing this span.
Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start);
assert(I != ranges.begin() && "Range is not in interval!");
--I;
assert(I->contains(Start) && I->contains(End-1) &&
"Range is not entirely in interval!");
// If the span we are removing is at the start of the LiveRange, adjust it.
if (I->start == Start) {
if (I->end == End)
ranges.erase(I); // Removed the whole LiveRange.
else
I->start = End;
return;
}
// Otherwise if the span we are removing is at the end of the LiveRange,
// adjust the other way.
if (I->end == End) {
I->end = Start;
return;
}
// Otherwise, we are splitting the LiveRange into two pieces.
unsigned OldEnd = I->end;
I->end = Start; // Trim the old interval.
// Insert the new one.
ranges.insert(next(I), LiveRange(End, OldEnd, I->ValId));
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveInterval::const_iterator
LiveInterval::FindLiveRangeContaining(unsigned Idx) const {
const_iterator It = std::upper_bound(begin(), end(), Idx);
if (It != ranges.begin()) {
--It;
if (It->contains(Idx))
return It;
}
return end();
}
LiveInterval::iterator
LiveInterval::FindLiveRangeContaining(unsigned Idx) {
iterator It = std::upper_bound(begin(), end(), Idx);
if (It != begin()) {
--It;
if (It->contains(Idx))
return It;
}
return end();
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void LiveInterval::join(LiveInterval &Other, int *LHSValNoAssignments,
int *RHSValNoAssignments,
SmallVector<std::pair<unsigned,
unsigned>, 16> &NewValueNumberInfo) {
// Try to do the least amount of work possible. In particular, if there are
// more liverange chunks in the other set than there are in the 'this' set,
// swap sets to merge the fewest chunks in possible.
//
// Also, if one range is a physreg and one is a vreg, we always merge from the
// vreg into the physreg, which leaves the vreg intervals pristine.
if ((Other.ranges.size() > ranges.size() &&
MRegisterInfo::isVirtualRegister(reg)) ||
MRegisterInfo::isPhysicalRegister(Other.reg)) {
swap(Other);
std::swap(LHSValNoAssignments, RHSValNoAssignments);
}
// Determine if any of our live range values are mapped. This is uncommon, so
// we want to avoid the interval scan if not.
bool MustMapCurValNos = false;
for (unsigned i = 0, e = getNumValNums(); i != e; ++i) {
if (ValueNumberInfo[i].first == ~2U) continue; // tombstone value #
if (i != (unsigned)LHSValNoAssignments[i]) {
MustMapCurValNos = true;
break;
}
}
// If we have to apply a mapping to our base interval assignment, rewrite it
// now.
if (MustMapCurValNos) {
// Map the first live range.
iterator OutIt = begin();
OutIt->ValId = LHSValNoAssignments[OutIt->ValId];
++OutIt;
for (iterator I = OutIt, E = end(); I != E; ++I) {
OutIt->ValId = LHSValNoAssignments[I->ValId];
// If this live range has the same value # as its immediate predecessor,
// and if they are neighbors, remove one LiveRange. This happens when we
// have [0,3:0)[4,7:1) and map 0/1 onto the same value #.
if (OutIt->ValId == (OutIt-1)->ValId && (OutIt-1)->end == OutIt->start) {
(OutIt-1)->end = OutIt->end;
} else {
if (I != OutIt) {
OutIt->start = I->start;
OutIt->end = I->end;
}
// Didn't merge, on to the next one.
++OutIt;
}
}
// If we merge some live ranges, chop off the end.
ranges.erase(OutIt, end());
}
// Okay, now insert the RHS live ranges into the LHS.
iterator InsertPos = begin();
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) {
// Map the ValId in the other live range to the current live range.
I->ValId = RHSValNoAssignments[I->ValId];
InsertPos = addRangeFrom(*I, InsertPos);
}
ValueNumberInfo.clear();
ValueNumberInfo.append(NewValueNumberInfo.begin(), NewValueNumberInfo.end());
weight += Other.weight;
}
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
/// interval as the specified value number. The LiveRanges in RHS are
/// allowed to overlap with LiveRanges in the current interval, but only if
/// the overlapping LiveRanges have the specified value number.
void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
unsigned LHSValNo) {
// TODO: Make this more efficient.
iterator InsertPos = begin();
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
// Map the ValId in the other live range to the current live range.
LiveRange Tmp = *I;
Tmp.ValId = LHSValNo;
InsertPos = addRangeFrom(Tmp, InsertPos);
}
}
/// MergeInClobberRanges - For any live ranges that are not defined in the
/// current interval, but are defined in the Clobbers interval, mark them
/// used with an unknown definition value.
void LiveInterval::MergeInClobberRanges(const LiveInterval &Clobbers) {
if (Clobbers.begin() == Clobbers.end()) return;
// Find a value # to use for the clobber ranges. If there is already a value#
// for unknown values, use it.
// FIXME: Use a single sentinal number for these!
unsigned ClobberValNo = getNextValue(~0U, 0);
iterator IP = begin();
for (const_iterator I = Clobbers.begin(), E = Clobbers.end(); I != E; ++I) {
unsigned Start = I->start, End = I->end;
IP = std::upper_bound(IP, end(), Start);
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > Start) {
Start = IP[-1].end;
// Trimmed away the whole range?
if (Start >= End) continue;
}
// If the end of this range overlaps with an existing liverange, trim it.
if (IP != end() && End > IP->start) {
End = IP->start;
// If this trimmed away the whole range, ignore it.
if (Start == End) continue;
}
// Insert the clobber interval.
IP = addRangeFrom(LiveRange(Start, End, ClobberValNo), IP);
}
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
void LiveInterval::MergeValueNumberInto(unsigned V1, unsigned V2) {
assert(V1 != V2 && "Identical value#'s are always equivalent!");
// This code actually merges the (numerically) larger value number into the
// smaller value number, which is likely to allow us to compactify the value
// space. The only thing we have to be careful of is to preserve the
// instruction that defines the result value.
// Make sure V2 is smaller than V1.
if (V1 < V2) {
setValueNumberInfo(V1, getValNumInfo(V2));
std::swap(V1, V2);
}
// Merge V1 live ranges into V2.
for (iterator I = begin(); I != end(); ) {
iterator LR = I++;
if (LR->ValId != V1) continue; // Not a V1 LiveRange.
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
// range, extend it.
if (LR != begin()) {
iterator Prev = LR-1;
if (Prev->ValId == V2 && Prev->end == LR->start) {
Prev->end = LR->end;
// Erase this live-range.
ranges.erase(LR);
I = Prev+1;
LR = Prev;
}
}
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
// Ensure that it is a V2 live-range.
LR->ValId = V2;
// If we can merge it into later V2 live ranges, do so now. We ignore any
// following V1 live ranges, as they will be merged in subsequent iterations
// of the loop.
if (I != end()) {
if (I->start == LR->end && I->ValId == V2) {
LR->end = I->end;
ranges.erase(I);
I = LR+1;
}
}
}
// Now that V1 is dead, remove it. If it is the largest value number, just
// nuke it (and any other deleted values neighboring it), otherwise mark it as
// ~1U so it can be nuked later.
if (V1 == getNumValNums()-1) {
do {
ValueNumberInfo.pop_back();
} while (ValueNumberInfo.back().first == ~1U);
} else {
ValueNumberInfo[V1].first = ~1U;
}
}
std::ostream& llvm::operator<<(std::ostream& os, const LiveRange &LR) {
return os << '[' << LR.start << ',' << LR.end << ':' << LR.ValId << ")";
}
void LiveRange::dump() const {
cerr << *this << "\n";
}
void LiveInterval::print(std::ostream &OS, const MRegisterInfo *MRI) const {
if (MRI && MRegisterInfo::isPhysicalRegister(reg))
OS << MRI->getName(reg);
else
OS << "%reg" << reg;
OS << ',' << weight;
if (empty())
OS << "EMPTY";
else {
OS << " = ";
for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
E = ranges.end(); I != E; ++I)
OS << *I;
}
// Print value number info.
if (getNumValNums()) {
OS << " ";
for (unsigned i = 0; i != getNumValNums(); ++i) {
if (i) OS << " ";
OS << i << "@";
if (ValueNumberInfo[i].first == ~0U) {
OS << "?";
} else {
OS << ValueNumberInfo[i].first;
}
}
}
}
void LiveInterval::dump() const {
cerr << *this << "\n";
}
void LiveRange::print(std::ostream &os) const {
os << *this;
}