llvm-6502/include/llvm/Support/ELF.h

1544 lines
59 KiB
C
Raw Normal View History

//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ELF_H
#define LLVM_SUPPORT_ELF_H
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
namespace ELF {
typedef uint32_t Elf32_Addr; // Program address
typedef uint32_t Elf32_Off; // File offset
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Word;
typedef int32_t Elf32_Sword;
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef uint16_t Elf64_Half;
typedef uint32_t Elf64_Word;
typedef int32_t Elf64_Sword;
typedef uint64_t Elf64_Xword;
typedef int64_t Elf64_Sxword;
// Object file magic string.
static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
// e_ident size and indices.
enum {
EI_MAG0 = 0, // File identification index.
EI_MAG1 = 1, // File identification index.
EI_MAG2 = 2, // File identification index.
EI_MAG3 = 3, // File identification index.
EI_CLASS = 4, // File class.
EI_DATA = 5, // Data encoding.
EI_VERSION = 6, // File version.
EI_OSABI = 7, // OS/ABI identification.
EI_ABIVERSION = 8, // ABI version.
EI_PAD = 9, // Start of padding bytes.
EI_NIDENT = 16 // Number of bytes in e_ident.
};
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
Elf32_Half e_type; // Type of file (see ET_* below)
Elf32_Half e_machine; // Required architecture for this file (see EM_*)
Elf32_Word e_version; // Must be equal to 1
Elf32_Addr e_entry; // Address to jump to in order to start program
Elf32_Off e_phoff; // Program header table's file offset, in bytes
Elf32_Off e_shoff; // Section header table's file offset, in bytes
Elf32_Word e_flags; // Processor-specific flags
Elf32_Half e_ehsize; // Size of ELF header, in bytes
Elf32_Half e_phentsize; // Size of an entry in the program header table
Elf32_Half e_phnum; // Number of entries in the program header table
Elf32_Half e_shentsize; // Size of an entry in the section header table
Elf32_Half e_shnum; // Number of entries in the section header table
Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// 64-bit ELF header. Fields are the same as for ELF32, but with different
// types (see above).
struct Elf64_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// File types
enum {
ET_NONE = 0, // No file type
ET_REL = 1, // Relocatable file
ET_EXEC = 2, // Executable file
ET_DYN = 3, // Shared object file
ET_CORE = 4, // Core file
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
ET_HIPROC = 0xffff // Processor-specific
};
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
// Machine architectures
enum {
EM_NONE = 0, // No machine
EM_M32 = 1, // AT&T WE 32100
EM_SPARC = 2, // SPARC
EM_386 = 3, // Intel 386
EM_68K = 4, // Motorola 68000
EM_88K = 5, // Motorola 88000
EM_486 = 6, // Intel 486 (deprecated)
EM_860 = 7, // Intel 80860
EM_MIPS = 8, // MIPS R3000
EM_S370 = 9, // IBM System/370
EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
EM_PARISC = 15, // Hewlett-Packard PA-RISC
EM_VPP500 = 17, // Fujitsu VPP500
EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
EM_960 = 19, // Intel 80960
EM_PPC = 20, // PowerPC
EM_PPC64 = 21, // PowerPC64
EM_S390 = 22, // IBM System/390
EM_SPU = 23, // IBM SPU/SPC
EM_V800 = 36, // NEC V800
EM_FR20 = 37, // Fujitsu FR20
EM_RH32 = 38, // TRW RH-32
EM_RCE = 39, // Motorola RCE
EM_ARM = 40, // ARM
EM_ALPHA = 41, // DEC Alpha
EM_SH = 42, // Hitachi SH
EM_SPARCV9 = 43, // SPARC V9
EM_TRICORE = 44, // Siemens TriCore
EM_ARC = 45, // Argonaut RISC Core
EM_H8_300 = 46, // Hitachi H8/300
EM_H8_300H = 47, // Hitachi H8/300H
EM_H8S = 48, // Hitachi H8S
EM_H8_500 = 49, // Hitachi H8/500
EM_IA_64 = 50, // Intel IA-64 processor architecture
EM_MIPS_X = 51, // Stanford MIPS-X
EM_COLDFIRE = 52, // Motorola ColdFire
EM_68HC12 = 53, // Motorola M68HC12
EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
EM_PCP = 55, // Siemens PCP
EM_NCPU = 56, // Sony nCPU embedded RISC processor
EM_NDR1 = 57, // Denso NDR1 microprocessor
EM_STARCORE = 58, // Motorola Star*Core processor
EM_ME16 = 59, // Toyota ME16 processor
EM_ST100 = 60, // STMicroelectronics ST100 processor
EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
EM_X86_64 = 62, // AMD x86-64 architecture
EM_PDSP = 63, // Sony DSP Processor
EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
EM_FX66 = 66, // Siemens FX66 microcontroller
EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
EM_SVX = 73, // Silicon Graphics SVx
EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
EM_VAX = 75, // Digital VAX
EM_CRIS = 76, // Axis Communications 32-bit embedded processor
EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
EM_HUANY = 81, // Harvard University machine-independent object files
EM_PRISM = 82, // SiTera Prism
EM_AVR = 83, // Atmel AVR 8-bit microcontroller
EM_FR30 = 84, // Fujitsu FR30
EM_D10V = 85, // Mitsubishi D10V
EM_D30V = 86, // Mitsubishi D30V
EM_V850 = 87, // NEC v850
EM_M32R = 88, // Mitsubishi M32R
EM_MN10300 = 89, // Matsushita MN10300
EM_MN10200 = 90, // Matsushita MN10200
EM_PJ = 91, // picoJava
EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
// spelling/synonym: EM_ARC_A5)
EM_XTENSA = 94, // Tensilica Xtensa Architecture
EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
EM_NS32K = 97, // National Semiconductor 32000 series
EM_TPC = 98, // Tenor Network TPC processor
EM_SNP1K = 99, // Trebia SNP 1000 processor
EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
EM_MAX = 102, // MAX Processor
EM_CR = 103, // National Semiconductor CompactRISC microprocessor
EM_F2MC16 = 104, // Fujitsu F2MC16
EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
EM_SEP = 108, // Sharp embedded microprocessor
EM_ARCA = 109, // Arca RISC Microprocessor
EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
// of Peking University
EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
EM_CRX = 114, // National Semiconductor CompactRISC CRX
EM_XGATE = 115, // Motorola XGATE embedded processor
EM_C166 = 116, // Infineon C16x/XC16x processor
EM_M16C = 117, // Renesas M16C series microprocessors
EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
// Controller
EM_CE = 119, // Freescale Communication Engine RISC core
EM_M32C = 120, // Renesas M32C series microprocessors
EM_TSK3000 = 131, // Altium TSK3000 core
EM_RS08 = 132, // Freescale RS08 embedded processor
EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
// processors
EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
EM_SE_C17 = 139, // Seiko Epson C17 family
EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
EM_R32C = 162, // Renesas R32C series microprocessors
EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
EM_HEXAGON = 164, // Qualcomm Hexagon processor
EM_8051 = 165, // Intel 8051 and variants
EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
// and extensible RISC processors
EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
// processor family
EM_ECOG1 = 168, // Cyan Technology eCOG1X family
EM_ECOG1X = 168, // Cyan Technology eCOG1X family
EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
EM_RX = 173, // Renesas RX family
EM_METAG = 174, // Imagination Technologies META processor
// architecture
EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
EM_ECOG16 = 176, // Cyan Technology eCOG16 family
EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
// microprocessor
EM_ETPU = 178, // Freescale Extended Time Processing Unit
EM_SLE9X = 179, // Infineon Technologies SLE9X core
EM_L10M = 180, // Intel L10M
EM_K10M = 181, // Intel K10M
EM_AARCH64 = 183, // ARM AArch64
EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core
EM_CUDA = 190, // NVIDIA CUDA architecture
EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
EM_CLOUDSHIELD = 192, // CloudShield architecture family
EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
EM_RL78 = 197, // Renesas RL78 family
EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
EM_78KOR = 199, // Renesas 78KOR family
EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
EM_MBLAZE = 47787 // Xilinx MicroBlaze
};
// Object file classes.
enum {
ELFCLASSNONE = 0,
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// Object file byte orderings.
enum {
ELFDATANONE = 0, // Invalid data encoding.
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
// OS ABI identification.
enum {
ELFOSABI_NONE = 0, // UNIX System V ABI
ELFOSABI_HPUX = 1, // HP-UX operating system
ELFOSABI_NETBSD = 2, // NetBSD
ELFOSABI_LINUX = 3, // GNU/Linux
ELFOSABI_HURD = 4, // GNU/Hurd
ELFOSABI_SOLARIS = 6, // Solaris
ELFOSABI_AIX = 7, // AIX
ELFOSABI_IRIX = 8, // IRIX
ELFOSABI_FREEBSD = 9, // FreeBSD
ELFOSABI_TRU64 = 10, // TRU64 UNIX
ELFOSABI_MODESTO = 11, // Novell Modesto
ELFOSABI_OPENBSD = 12, // OpenBSD
ELFOSABI_OPENVMS = 13, // OpenVMS
ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
ELFOSABI_AROS = 15, // AROS
ELFOSABI_FENIXOS = 16, // FenixOS
ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
ELFOSABI_ARM = 97, // ARM
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
};
// X86_64 relocations.
enum {
R_X86_64_NONE = 0,
R_X86_64_64 = 1,
R_X86_64_PC32 = 2,
R_X86_64_GOT32 = 3,
R_X86_64_PLT32 = 4,
R_X86_64_COPY = 5,
R_X86_64_GLOB_DAT = 6,
R_X86_64_JUMP_SLOT = 7,
R_X86_64_RELATIVE = 8,
R_X86_64_GOTPCREL = 9,
R_X86_64_32 = 10,
R_X86_64_32S = 11,
R_X86_64_16 = 12,
R_X86_64_PC16 = 13,
R_X86_64_8 = 14,
R_X86_64_PC8 = 15,
R_X86_64_DTPMOD64 = 16,
R_X86_64_DTPOFF64 = 17,
R_X86_64_TPOFF64 = 18,
R_X86_64_TLSGD = 19,
R_X86_64_TLSLD = 20,
R_X86_64_DTPOFF32 = 21,
R_X86_64_GOTTPOFF = 22,
R_X86_64_TPOFF32 = 23,
R_X86_64_PC64 = 24,
R_X86_64_GOTOFF64 = 25,
R_X86_64_GOTPC32 = 26,
R_X86_64_GOT64 = 27,
R_X86_64_GOTPCREL64 = 28,
R_X86_64_GOTPC64 = 29,
R_X86_64_GOTPLT64 = 30,
R_X86_64_PLTOFF64 = 31,
R_X86_64_SIZE32 = 32,
R_X86_64_SIZE64 = 33,
R_X86_64_GOTPC32_TLSDESC = 34,
R_X86_64_TLSDESC_CALL = 35,
R_X86_64_TLSDESC = 36,
R_X86_64_IRELATIVE = 37
};
// i386 relocations.
// TODO: this is just a subset
enum {
R_386_NONE = 0,
R_386_32 = 1,
R_386_PC32 = 2,
R_386_GOT32 = 3,
R_386_PLT32 = 4,
R_386_COPY = 5,
R_386_GLOB_DAT = 6,
R_386_JUMP_SLOT = 7,
R_386_RELATIVE = 8,
R_386_GOTOFF = 9,
R_386_GOTPC = 10,
R_386_32PLT = 11,
R_386_TLS_TPOFF = 14,
R_386_TLS_IE = 15,
R_386_TLS_GOTIE = 16,
R_386_TLS_LE = 17,
R_386_TLS_GD = 18,
R_386_TLS_LDM = 19,
R_386_16 = 20,
R_386_PC16 = 21,
R_386_8 = 22,
R_386_PC8 = 23,
R_386_TLS_GD_32 = 24,
R_386_TLS_GD_PUSH = 25,
R_386_TLS_GD_CALL = 26,
R_386_TLS_GD_POP = 27,
R_386_TLS_LDM_32 = 28,
R_386_TLS_LDM_PUSH = 29,
R_386_TLS_LDM_CALL = 30,
R_386_TLS_LDM_POP = 31,
R_386_TLS_LDO_32 = 32,
R_386_TLS_IE_32 = 33,
R_386_TLS_LE_32 = 34,
R_386_TLS_DTPMOD32 = 35,
R_386_TLS_DTPOFF32 = 36,
R_386_TLS_TPOFF32 = 37,
R_386_TLS_GOTDESC = 39,
R_386_TLS_DESC_CALL = 40,
R_386_TLS_DESC = 41,
R_386_IRELATIVE = 42,
R_386_NUM = 43
};
// MBlaze relocations.
enum {
R_MICROBLAZE_NONE = 0,
R_MICROBLAZE_32 = 1,
R_MICROBLAZE_32_PCREL = 2,
R_MICROBLAZE_64_PCREL = 3,
R_MICROBLAZE_32_PCREL_LO = 4,
R_MICROBLAZE_64 = 5,
R_MICROBLAZE_32_LO = 6,
R_MICROBLAZE_SRO32 = 7,
R_MICROBLAZE_SRW32 = 8,
R_MICROBLAZE_64_NONE = 9,
R_MICROBLAZE_32_SYM_OP_SYM = 10,
R_MICROBLAZE_GNU_VTINHERIT = 11,
R_MICROBLAZE_GNU_VTENTRY = 12,
R_MICROBLAZE_GOTPC_64 = 13,
R_MICROBLAZE_GOT_64 = 14,
R_MICROBLAZE_PLT_64 = 15,
R_MICROBLAZE_REL = 16,
R_MICROBLAZE_JUMP_SLOT = 17,
R_MICROBLAZE_GLOB_DAT = 18,
R_MICROBLAZE_GOTOFF_64 = 19,
R_MICROBLAZE_GOTOFF_32 = 20,
R_MICROBLAZE_COPY = 21
};
// ELF Relocation types for PPC32
enum {
R_PPC_NONE = 0, /* No relocation. */
R_PPC_ADDR32 = 1,
R_PPC_ADDR24 = 2,
R_PPC_ADDR16 = 3,
R_PPC_ADDR16_LO = 4,
R_PPC_ADDR16_HI = 5,
R_PPC_ADDR16_HA = 6,
R_PPC_ADDR14 = 7,
R_PPC_ADDR14_BRTAKEN = 8,
R_PPC_ADDR14_BRNTAKEN = 9,
R_PPC_REL24 = 10,
R_PPC_REL14 = 11,
R_PPC_REL14_BRTAKEN = 12,
R_PPC_REL14_BRNTAKEN = 13,
R_PPC_REL32 = 26,
R_PPC_TPREL16_LO = 70,
R_PPC_TPREL16_HA = 72
};
// ELF Relocation types for PPC64
enum {
R_PPC64_NONE = 0,
R_PPC64_ADDR32 = 1,
R_PPC64_ADDR24 = 2,
R_PPC64_ADDR16 = 3,
R_PPC64_ADDR16_LO = 4,
R_PPC64_ADDR16_HI = 5,
R_PPC64_ADDR16_HA = 6,
R_PPC64_ADDR14 = 7,
R_PPC64_ADDR14_BRTAKEN = 8,
R_PPC64_ADDR14_BRNTAKEN = 9,
R_PPC64_REL24 = 10,
R_PPC64_REL14 = 11,
R_PPC64_REL14_BRTAKEN = 12,
R_PPC64_REL14_BRNTAKEN = 13,
R_PPC64_REL32 = 26,
R_PPC64_ADDR64 = 38,
R_PPC64_ADDR16_HIGHER = 39,
R_PPC64_ADDR16_HIGHEST = 41,
R_PPC64_REL64 = 44,
R_PPC64_TOC16 = 47,
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
R_PPC64_TOC16_LO = 48,
R_PPC64_TOC16_HA = 50,
R_PPC64_TOC = 51,
R_PPC64_ADDR16_DS = 56,
R_PPC64_ADDR16_LO_DS = 57,
This patch implements medium code model support for 64-bit PowerPC. The default for 64-bit PowerPC is small code model, in which TOC entries must be addressable using a 16-bit offset from the TOC pointer. Additionally, only TOC entries are addressed via the TOC pointer. With medium code model, TOC entries and data sections can all be addressed via the TOC pointer using a 32-bit offset. Cooperation with the linker allows 16-bit offsets to be used when these are sufficient, reducing the number of extra instructions that need to be executed. Medium code model also does not generate explicit TOC entries in ".section toc" for variables that are wholly internal to the compilation unit. Consider a load of an external 4-byte integer. With small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei With medium model, it instead generates: addis 3, 2, .LC1@toc@ha ld 3, .LC1@toc@l(3) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc ei[TC],ei Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the 32-bit offset of ei's TOC entry from the TOC base pointer. Similarly, .LC1@toc@l is a relocation requesting the lower 16 bits. Note that if the linker determines that ei's TOC entry is within a 16-bit offset of the TOC base pointer, it will replace the "addis" with a "nop", and replace the "ld" with the identical "ld" instruction from the small code model example. Consider next a load of a function-scope static integer. For small code model, the compiler generates: ld 3, .LC1@toc(2) lwz 4, 0(3) .section .toc,"aw",@progbits .LC1: .tc test_fn_static.si[TC],test_fn_static.si .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 For medium code model, the compiler generates: addis 3, 2, test_fn_static.si@toc@ha addi 3, 3, test_fn_static.si@toc@l lwz 4, 0(3) .type test_fn_static.si,@object .local test_fn_static.si .comm test_fn_static.si,4,4 Again, the linker may replace the "addis" with a "nop", calculating only a 16-bit offset when this is sufficient. Note that it would be more efficient for the compiler to generate: addis 3, 2, test_fn_static.si@toc@ha lwz 4, test_fn_static.si@toc@l(3) The current patch does not perform this optimization yet. This will be addressed as a peephole optimization in a later patch. For the moment, the default code model for 64-bit PowerPC will remain the small code model. We plan to eventually change the default to medium code model, which matches current upstream GCC behavior. Note that the different code models are ABI-compatible, so code compiled with different models will be linked and execute correctly. I've tested the regression suite and the application/benchmark test suite in two ways: Once with the patch as submitted here, and once with additional logic to force medium code model as the default. The tests all compile cleanly, with one exception. The mandel-2 application test fails due to an unrelated ABI compatibility with passing complex numbers. It just so happens that small code model was incredibly lucky, in that temporary values in floating-point registers held the expected values needed by the external library routine that was called incorrectly. My current thought is to correct the ABI problems with _Complex before making medium code model the default, to avoid introducing this "regression." Here are a few comments on how the patch works, since the selection code can be difficult to follow: The existing logic for small code model defines three pseudo-instructions: LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for constant pool addresses. These are expanded by SelectCodeCommon(). The pseudo-instruction approach doesn't work for medium code model, because we need to generate two instructions when we match the same pattern. Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY node for medium code model, and generates an ADDIStocHA followed by either a LDtocL or an ADDItocL. These new node types correspond naturally to the sequences described above. The addis/ld sequence is generated for the following cases: * Jump table addresses * Function addresses * External global variables * Tentative definitions of global variables (common linkage) The addis/addi sequence is generated for the following cases: * Constant pool entries * File-scope static global variables * Function-scope static variables Expanding to the two-instruction sequences at select time exposes the instructions to subsequent optimization, particularly scheduling. The rest of the processing occurs at assembly time, in PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to a "real" PowerPC instruction. When a TOC entry needs to be created, this is done here in the same manner as for the existing LDtoc, LDtocJTI, and LDtocCPT pseudo-instructions (I factored out a new routine to handle this). I had originally thought that if a TOC entry was needed for LDtocL or ADDItocL, it would already have been generated for the previous ADDIStocHA. However, at higher optimization levels, the ADDIStocHA may appear in a different block, which may be assembled textually following the block containing the LDtocL or ADDItocL. So it is necessary to include the possibility of creating a new TOC entry for those two instructions. Note that for LDtocL, we generate a new form of LD called LDrs. This allows specifying the @toc@l relocation for the offset field of the LD instruction (i.e., the offset is replaced by a SymbolLo relocation). When the peephole optimization described above is added, we will need to do similar things for all immediate-form load and store operations. The seven "mcm-n.ll" test cases are kept separate because otherwise the intermingling of various TOC entries and so forth makes the tests fragile and hard to understand. The above assumes use of an external assembler. For use of the integrated assembler, new relocations are added and used by PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for proper generation of the various relocations for the same sequences tested with the external assembler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168708 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-27 17:35:46 +00:00
R_PPC64_TOC16_DS = 63,
R_PPC64_TOC16_LO_DS = 64,
R_PPC64_TLS = 67,
R_PPC64_TPREL16_LO = 70,
R_PPC64_TPREL16_HA = 72,
R_PPC64_DTPREL16_LO = 75,
R_PPC64_DTPREL16_HA = 77,
This patch implements the general dynamic TLS model for 64-bit PowerPC. Given a thread-local symbol x with global-dynamic access, the generated code to obtain x's address is: Instruction Relocation Symbol addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x R_PPC64_REL24 __tls_get_addr nop <use address in r3> The implementation borrows from the medium code model work for introducing special forms of ADDIS and ADDI into the DAG representation. This is made slightly more complicated by having to introduce a call to the external function __tls_get_addr. Using the full call machinery is overkill and, more importantly, makes it difficult to add a special relocation. So I've introduced another opcode GET_TLS_ADDR to represent the function call, and surrounded it with register copies to set up the parameter and return value. Most of the code is pretty straightforward. I ran into one peculiarity when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like BL8_NOP_ELF except that it takes another parameter to represent the symbol ("x" above) that requires a relocation on the call. Something in the TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated identically during the emit phase, so this second operand was never visited to generate relocations. This is the reason for the slightly messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding(). Two new tests are included to demonstrate correct external assembly and correct generation of relocations using the integrated assembler. Comments welcome! Thanks, Bill git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-11 20:30:11 +00:00
R_PPC64_GOT_TLSGD16_LO = 80,
R_PPC64_GOT_TLSGD16_HA = 82,
R_PPC64_GOT_TLSLD16_LO = 84,
R_PPC64_GOT_TLSLD16_HA = 86,
R_PPC64_GOT_TPREL16_LO_DS = 88,
R_PPC64_GOT_TPREL16_HA = 90,
R_PPC64_TLSGD = 107,
R_PPC64_TLSLD = 108
};
// ELF Relocation types for AArch64
enum {
R_AARCH64_NONE = 0x100,
R_AARCH64_ABS64 = 0x101,
R_AARCH64_ABS32 = 0x102,
R_AARCH64_ABS16 = 0x103,
R_AARCH64_PREL64 = 0x104,
R_AARCH64_PREL32 = 0x105,
R_AARCH64_PREL16 = 0x106,
R_AARCH64_MOVW_UABS_G0 = 0x107,
R_AARCH64_MOVW_UABS_G0_NC = 0x108,
R_AARCH64_MOVW_UABS_G1 = 0x109,
R_AARCH64_MOVW_UABS_G1_NC = 0x10a,
R_AARCH64_MOVW_UABS_G2 = 0x10b,
R_AARCH64_MOVW_UABS_G2_NC = 0x10c,
R_AARCH64_MOVW_UABS_G3 = 0x10d,
R_AARCH64_MOVW_SABS_G0 = 0x10e,
R_AARCH64_MOVW_SABS_G1 = 0x10f,
R_AARCH64_MOVW_SABS_G2 = 0x110,
R_AARCH64_LD_PREL_LO19 = 0x111,
R_AARCH64_ADR_PREL_LO21 = 0x112,
R_AARCH64_ADR_PREL_PG_HI21 = 0x113,
R_AARCH64_ADD_ABS_LO12_NC = 0x115,
R_AARCH64_LDST8_ABS_LO12_NC = 0x116,
R_AARCH64_TSTBR14 = 0x117,
R_AARCH64_CONDBR19 = 0x118,
R_AARCH64_JUMP26 = 0x11a,
R_AARCH64_CALL26 = 0x11b,
R_AARCH64_LDST16_ABS_LO12_NC = 0x11c,
R_AARCH64_LDST32_ABS_LO12_NC = 0x11d,
R_AARCH64_LDST64_ABS_LO12_NC = 0x11e,
R_AARCH64_LDST128_ABS_LO12_NC = 0x12b,
R_AARCH64_ADR_GOT_PAGE = 0x137,
R_AARCH64_LD64_GOT_LO12_NC = 0x138,
R_AARCH64_TLSLD_MOVW_DTPREL_G2 = 0x20b,
R_AARCH64_TLSLD_MOVW_DTPREL_G1 = 0x20c,
R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC = 0x20d,
R_AARCH64_TLSLD_MOVW_DTPREL_G0 = 0x20e,
R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC = 0x20f,
R_AARCH64_TLSLD_ADD_DTPREL_HI12 = 0x210,
R_AARCH64_TLSLD_ADD_DTPREL_LO12 = 0x211,
R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC = 0x212,
R_AARCH64_TLSLD_LDST8_DTPREL_LO12 = 0x213,
R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC = 0x214,
R_AARCH64_TLSLD_LDST16_DTPREL_LO12 = 0x215,
R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC = 0x216,
R_AARCH64_TLSLD_LDST32_DTPREL_LO12 = 0x217,
R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC = 0x218,
R_AARCH64_TLSLD_LDST64_DTPREL_LO12 = 0x219,
R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC = 0x21a,
R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 = 0x21b,
R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC = 0x21c,
R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 = 0x21d,
R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC = 0x21e,
R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 = 0x21f,
R_AARCH64_TLSLE_MOVW_TPREL_G2 = 0x220,
R_AARCH64_TLSLE_MOVW_TPREL_G1 = 0x221,
R_AARCH64_TLSLE_MOVW_TPREL_G1_NC = 0x222,
R_AARCH64_TLSLE_MOVW_TPREL_G0 = 0x223,
R_AARCH64_TLSLE_MOVW_TPREL_G0_NC = 0x224,
R_AARCH64_TLSLE_ADD_TPREL_HI12 = 0x225,
R_AARCH64_TLSLE_ADD_TPREL_LO12 = 0x226,
R_AARCH64_TLSLE_ADD_TPREL_LO12_NC = 0x227,
R_AARCH64_TLSLE_LDST8_TPREL_LO12 = 0x228,
R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC = 0x229,
R_AARCH64_TLSLE_LDST16_TPREL_LO12 = 0x22a,
R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC = 0x22b,
R_AARCH64_TLSLE_LDST32_TPREL_LO12 = 0x22c,
R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC = 0x22d,
R_AARCH64_TLSLE_LDST64_TPREL_LO12 = 0x22e,
R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC = 0x22f,
R_AARCH64_TLSDESC_ADR_PAGE = 0x232,
R_AARCH64_TLSDESC_LD64_LO12_NC = 0x233,
R_AARCH64_TLSDESC_ADD_LO12_NC = 0x234,
R_AARCH64_TLSDESC_CALL = 0x239
};
// ARM Specific e_flags
enum {
EF_ARM_SOFT_FLOAT = 0x00000200U,
EF_ARM_VFP_FLOAT = 0x00000400U,
EF_ARM_EABI_UNKNOWN = 0x00000000U,
EF_ARM_EABI_VER1 = 0x01000000U,
EF_ARM_EABI_VER2 = 0x02000000U,
EF_ARM_EABI_VER3 = 0x03000000U,
EF_ARM_EABI_VER4 = 0x04000000U,
EF_ARM_EABI_VER5 = 0x05000000U,
EF_ARM_EABIMASK = 0xFF000000U
};
// ELF Relocation types for ARM
// Meets 2.08 ABI Specs.
enum {
R_ARM_NONE = 0x00,
R_ARM_PC24 = 0x01,
R_ARM_ABS32 = 0x02,
R_ARM_REL32 = 0x03,
R_ARM_LDR_PC_G0 = 0x04,
R_ARM_ABS16 = 0x05,
R_ARM_ABS12 = 0x06,
R_ARM_THM_ABS5 = 0x07,
R_ARM_ABS8 = 0x08,
R_ARM_SBREL32 = 0x09,
R_ARM_THM_CALL = 0x0a,
R_ARM_THM_PC8 = 0x0b,
R_ARM_BREL_ADJ = 0x0c,
R_ARM_TLS_DESC = 0x0d,
R_ARM_THM_SWI8 = 0x0e,
R_ARM_XPC25 = 0x0f,
R_ARM_THM_XPC22 = 0x10,
R_ARM_TLS_DTPMOD32 = 0x11,
R_ARM_TLS_DTPOFF32 = 0x12,
R_ARM_TLS_TPOFF32 = 0x13,
R_ARM_COPY = 0x14,
R_ARM_GLOB_DAT = 0x15,
R_ARM_JUMP_SLOT = 0x16,
R_ARM_RELATIVE = 0x17,
R_ARM_GOTOFF32 = 0x18,
R_ARM_BASE_PREL = 0x19,
R_ARM_GOT_BREL = 0x1a,
R_ARM_PLT32 = 0x1b,
R_ARM_CALL = 0x1c,
R_ARM_JUMP24 = 0x1d,
R_ARM_THM_JUMP24 = 0x1e,
R_ARM_BASE_ABS = 0x1f,
R_ARM_ALU_PCREL_7_0 = 0x20,
R_ARM_ALU_PCREL_15_8 = 0x21,
R_ARM_ALU_PCREL_23_15 = 0x22,
R_ARM_LDR_SBREL_11_0_NC = 0x23,
R_ARM_ALU_SBREL_19_12_NC = 0x24,
R_ARM_ALU_SBREL_27_20_CK = 0x25,
R_ARM_TARGET1 = 0x26,
R_ARM_SBREL31 = 0x27,
R_ARM_V4BX = 0x28,
R_ARM_TARGET2 = 0x29,
R_ARM_PREL31 = 0x2a,
R_ARM_MOVW_ABS_NC = 0x2b,
R_ARM_MOVT_ABS = 0x2c,
R_ARM_MOVW_PREL_NC = 0x2d,
R_ARM_MOVT_PREL = 0x2e,
R_ARM_THM_MOVW_ABS_NC = 0x2f,
R_ARM_THM_MOVT_ABS = 0x30,
R_ARM_THM_MOVW_PREL_NC = 0x31,
R_ARM_THM_MOVT_PREL = 0x32,
R_ARM_THM_JUMP19 = 0x33,
R_ARM_THM_JUMP6 = 0x34,
R_ARM_THM_ALU_PREL_11_0 = 0x35,
R_ARM_THM_PC12 = 0x36,
R_ARM_ABS32_NOI = 0x37,
R_ARM_REL32_NOI = 0x38,
R_ARM_ALU_PC_G0_NC = 0x39,
R_ARM_ALU_PC_G0 = 0x3a,
R_ARM_ALU_PC_G1_NC = 0x3b,
R_ARM_ALU_PC_G1 = 0x3c,
R_ARM_ALU_PC_G2 = 0x3d,
R_ARM_LDR_PC_G1 = 0x3e,
R_ARM_LDR_PC_G2 = 0x3f,
R_ARM_LDRS_PC_G0 = 0x40,
R_ARM_LDRS_PC_G1 = 0x41,
R_ARM_LDRS_PC_G2 = 0x42,
R_ARM_LDC_PC_G0 = 0x43,
R_ARM_LDC_PC_G1 = 0x44,
R_ARM_LDC_PC_G2 = 0x45,
R_ARM_ALU_SB_G0_NC = 0x46,
R_ARM_ALU_SB_G0 = 0x47,
R_ARM_ALU_SB_G1_NC = 0x48,
R_ARM_ALU_SB_G1 = 0x49,
R_ARM_ALU_SB_G2 = 0x4a,
R_ARM_LDR_SB_G0 = 0x4b,
R_ARM_LDR_SB_G1 = 0x4c,
R_ARM_LDR_SB_G2 = 0x4d,
R_ARM_LDRS_SB_G0 = 0x4e,
R_ARM_LDRS_SB_G1 = 0x4f,
R_ARM_LDRS_SB_G2 = 0x50,
R_ARM_LDC_SB_G0 = 0x51,
R_ARM_LDC_SB_G1 = 0x52,
R_ARM_LDC_SB_G2 = 0x53,
R_ARM_MOVW_BREL_NC = 0x54,
R_ARM_MOVT_BREL = 0x55,
R_ARM_MOVW_BREL = 0x56,
R_ARM_THM_MOVW_BREL_NC = 0x57,
R_ARM_THM_MOVT_BREL = 0x58,
R_ARM_THM_MOVW_BREL = 0x59,
R_ARM_TLS_GOTDESC = 0x5a,
R_ARM_TLS_CALL = 0x5b,
R_ARM_TLS_DESCSEQ = 0x5c,
R_ARM_THM_TLS_CALL = 0x5d,
R_ARM_PLT32_ABS = 0x5e,
R_ARM_GOT_ABS = 0x5f,
R_ARM_GOT_PREL = 0x60,
R_ARM_GOT_BREL12 = 0x61,
R_ARM_GOTOFF12 = 0x62,
R_ARM_GOTRELAX = 0x63,
R_ARM_GNU_VTENTRY = 0x64,
R_ARM_GNU_VTINHERIT = 0x65,
R_ARM_THM_JUMP11 = 0x66,
R_ARM_THM_JUMP8 = 0x67,
R_ARM_TLS_GD32 = 0x68,
R_ARM_TLS_LDM32 = 0x69,
R_ARM_TLS_LDO32 = 0x6a,
R_ARM_TLS_IE32 = 0x6b,
R_ARM_TLS_LE32 = 0x6c,
R_ARM_TLS_LDO12 = 0x6d,
R_ARM_TLS_LE12 = 0x6e,
R_ARM_TLS_IE12GP = 0x6f,
R_ARM_PRIVATE_0 = 0x70,
R_ARM_PRIVATE_1 = 0x71,
R_ARM_PRIVATE_2 = 0x72,
R_ARM_PRIVATE_3 = 0x73,
R_ARM_PRIVATE_4 = 0x74,
R_ARM_PRIVATE_5 = 0x75,
R_ARM_PRIVATE_6 = 0x76,
R_ARM_PRIVATE_7 = 0x77,
R_ARM_PRIVATE_8 = 0x78,
R_ARM_PRIVATE_9 = 0x79,
R_ARM_PRIVATE_10 = 0x7a,
R_ARM_PRIVATE_11 = 0x7b,
R_ARM_PRIVATE_12 = 0x7c,
R_ARM_PRIVATE_13 = 0x7d,
R_ARM_PRIVATE_14 = 0x7e,
R_ARM_PRIVATE_15 = 0x7f,
R_ARM_ME_TOO = 0x80,
R_ARM_THM_TLS_DESCSEQ16 = 0x81,
R_ARM_THM_TLS_DESCSEQ32 = 0x82
};
// Mips Specific e_flags
enum {
EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
EF_MIPS_PIC = 0x00000002, // Position independent code
EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
//ARCH_ASE
EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
EF_MIPS_ARCH_ASE_M16 =
0x04000000, // Has Mips-16 ISA extensions
//ARCH
EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
};
// ELF Relocation types for Mips
// .
enum {
R_MIPS_NONE = 0,
R_MIPS_16 = 1,
R_MIPS_32 = 2,
R_MIPS_REL32 = 3,
R_MIPS_26 = 4,
R_MIPS_HI16 = 5,
R_MIPS_LO16 = 6,
R_MIPS_GPREL16 = 7,
R_MIPS_LITERAL = 8,
R_MIPS_GOT16 = 9,
R_MIPS_GOT = 9,
R_MIPS_PC16 = 10,
R_MIPS_CALL16 = 11,
R_MIPS_GPREL32 = 12,
R_MIPS_SHIFT5 = 16,
R_MIPS_SHIFT6 = 17,
R_MIPS_64 = 18,
R_MIPS_GOT_DISP = 19,
R_MIPS_GOT_PAGE = 20,
R_MIPS_GOT_OFST = 21,
R_MIPS_GOT_HI16 = 22,
R_MIPS_GOT_LO16 = 23,
R_MIPS_SUB = 24,
R_MIPS_INSERT_A = 25,
R_MIPS_INSERT_B = 26,
R_MIPS_DELETE = 27,
R_MIPS_HIGHER = 28,
R_MIPS_HIGHEST = 29,
R_MIPS_CALL_HI16 = 30,
R_MIPS_CALL_LO16 = 31,
R_MIPS_SCN_DISP = 32,
R_MIPS_REL16 = 33,
R_MIPS_ADD_IMMEDIATE = 34,
R_MIPS_PJUMP = 35,
R_MIPS_RELGOT = 36,
R_MIPS_JALR = 37,
R_MIPS_TLS_DTPMOD32 = 38,
R_MIPS_TLS_DTPREL32 = 39,
R_MIPS_TLS_DTPMOD64 = 40,
R_MIPS_TLS_DTPREL64 = 41,
R_MIPS_TLS_GD = 42,
R_MIPS_TLS_LDM = 43,
R_MIPS_TLS_DTPREL_HI16 = 44,
R_MIPS_TLS_DTPREL_LO16 = 45,
R_MIPS_TLS_GOTTPREL = 46,
R_MIPS_TLS_TPREL32 = 47,
R_MIPS_TLS_TPREL64 = 48,
R_MIPS_TLS_TPREL_HI16 = 49,
R_MIPS_TLS_TPREL_LO16 = 50,
R_MIPS_GLOB_DAT = 51,
R_MIPS_COPY = 126,
R_MIPS_JUMP_SLOT = 127,
R_MIPS_NUM = 218
};
// Special values for the st_other field in the symbol table entry for MIPS.
enum {
STO_MIPS_MICROMIPS = 0x80 // MIPS Specific ISA for MicroMips
};
// Hexagon Specific e_flags
// Release 5 ABI
enum {
// Object processor version flags, bits[3:0]
EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
// Highest ISA version flags
EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0]
// of e_flags
EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA
};
// Hexagon specific Section indexes for common small data
// Release 5 ABI
enum {
SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
};
// ELF Relocation types for Hexagon
// Release 5 ABI
enum {
R_HEX_NONE = 0,
R_HEX_B22_PCREL = 1,
R_HEX_B15_PCREL = 2,
R_HEX_B7_PCREL = 3,
R_HEX_LO16 = 4,
R_HEX_HI16 = 5,
R_HEX_32 = 6,
R_HEX_16 = 7,
R_HEX_8 = 8,
R_HEX_GPREL16_0 = 9,
R_HEX_GPREL16_1 = 10,
R_HEX_GPREL16_2 = 11,
R_HEX_GPREL16_3 = 12,
R_HEX_HL16 = 13,
R_HEX_B13_PCREL = 14,
R_HEX_B9_PCREL = 15,
R_HEX_B32_PCREL_X = 16,
R_HEX_32_6_X = 17,
R_HEX_B22_PCREL_X = 18,
R_HEX_B15_PCREL_X = 19,
R_HEX_B13_PCREL_X = 20,
R_HEX_B9_PCREL_X = 21,
R_HEX_B7_PCREL_X = 22,
R_HEX_16_X = 23,
R_HEX_12_X = 24,
R_HEX_11_X = 25,
R_HEX_10_X = 26,
R_HEX_9_X = 27,
R_HEX_8_X = 28,
R_HEX_7_X = 29,
R_HEX_6_X = 30,
R_HEX_32_PCREL = 31,
R_HEX_COPY = 32,
R_HEX_GLOB_DAT = 33,
R_HEX_JMP_SLOT = 34,
R_HEX_RELATIVE = 35,
R_HEX_PLT_B22_PCREL = 36,
R_HEX_GOTREL_LO16 = 37,
R_HEX_GOTREL_HI16 = 38,
R_HEX_GOTREL_32 = 39,
R_HEX_GOT_LO16 = 40,
R_HEX_GOT_HI16 = 41,
R_HEX_GOT_32 = 42,
R_HEX_GOT_16 = 43,
R_HEX_DTPMOD_32 = 44,
R_HEX_DTPREL_LO16 = 45,
R_HEX_DTPREL_HI16 = 46,
R_HEX_DTPREL_32 = 47,
R_HEX_DTPREL_16 = 48,
R_HEX_GD_PLT_B22_PCREL = 49,
R_HEX_GD_GOT_LO16 = 50,
R_HEX_GD_GOT_HI16 = 51,
R_HEX_GD_GOT_32 = 52,
R_HEX_GD_GOT_16 = 53,
R_HEX_IE_LO16 = 54,
R_HEX_IE_HI16 = 55,
R_HEX_IE_32 = 56,
R_HEX_IE_GOT_LO16 = 57,
R_HEX_IE_GOT_HI16 = 58,
R_HEX_IE_GOT_32 = 59,
R_HEX_IE_GOT_16 = 60,
R_HEX_TPREL_LO16 = 61,
R_HEX_TPREL_HI16 = 62,
R_HEX_TPREL_32 = 63,
R_HEX_TPREL_16 = 64,
R_HEX_6_PCREL_X = 65,
R_HEX_GOTREL_32_6_X = 66,
R_HEX_GOTREL_16_X = 67,
R_HEX_GOTREL_11_X = 68,
R_HEX_GOT_32_6_X = 69,
R_HEX_GOT_16_X = 70,
R_HEX_GOT_11_X = 71,
R_HEX_DTPREL_32_6_X = 72,
R_HEX_DTPREL_16_X = 73,
R_HEX_DTPREL_11_X = 74,
R_HEX_GD_GOT_32_6_X = 75,
R_HEX_GD_GOT_16_X = 76,
R_HEX_GD_GOT_11_X = 77,
R_HEX_IE_32_6_X = 78,
R_HEX_IE_16_X = 79,
R_HEX_IE_GOT_32_6_X = 80,
R_HEX_IE_GOT_16_X = 81,
R_HEX_IE_GOT_11_X = 82,
R_HEX_TPREL_32_6_X = 83,
R_HEX_TPREL_16_X = 84,
R_HEX_TPREL_11_X = 85
};
// ELF Relocation types for S390/zSeries
enum {
R_390_NONE = 0,
R_390_8 = 1,
R_390_12 = 2,
R_390_16 = 3,
R_390_32 = 4,
R_390_PC32 = 5,
R_390_GOT12 = 6,
R_390_GOT32 = 7,
R_390_PLT32 = 8,
R_390_COPY = 9,
R_390_GLOB_DAT = 10,
R_390_JMP_SLOT = 11,
R_390_RELATIVE = 12,
R_390_GOTOFF = 13,
R_390_GOTPC = 14,
R_390_GOT16 = 15,
R_390_PC16 = 16,
R_390_PC16DBL = 17,
R_390_PLT16DBL = 18,
R_390_PC32DBL = 19,
R_390_PLT32DBL = 20,
R_390_GOTPCDBL = 21,
R_390_64 = 22,
R_390_PC64 = 23,
R_390_GOT64 = 24,
R_390_PLT64 = 25,
R_390_GOTENT = 26,
R_390_GOTOFF16 = 27,
R_390_GOTOFF64 = 28,
R_390_GOTPLT12 = 29,
R_390_GOTPLT16 = 30,
R_390_GOTPLT32 = 31,
R_390_GOTPLT64 = 32,
R_390_GOTPLTENT = 33,
R_390_PLTOFF16 = 34,
R_390_PLTOFF32 = 35,
R_390_PLTOFF64 = 36,
R_390_TLS_LOAD = 37,
R_390_TLS_GDCALL = 38,
R_390_TLS_LDCALL = 39,
R_390_TLS_GD32 = 40,
R_390_TLS_GD64 = 41,
R_390_TLS_GOTIE12 = 42,
R_390_TLS_GOTIE32 = 43,
R_390_TLS_GOTIE64 = 44,
R_390_TLS_LDM32 = 45,
R_390_TLS_LDM64 = 46,
R_390_TLS_IE32 = 47,
R_390_TLS_IE64 = 48,
R_390_TLS_IEENT = 49,
R_390_TLS_LE32 = 50,
R_390_TLS_LE64 = 51,
R_390_TLS_LDO32 = 52,
R_390_TLS_LDO64 = 53,
R_390_TLS_DTPMOD = 54,
R_390_TLS_DTPOFF = 55,
R_390_TLS_TPOFF = 56,
R_390_20 = 57,
R_390_GOT20 = 58,
R_390_GOTPLT20 = 59,
R_390_TLS_GOTIE20 = 60,
R_390_IRELATIVE = 61
};
// Section header.
struct Elf32_Shdr {
Elf32_Word sh_name; // Section name (index into string table)
Elf32_Word sh_type; // Section type (SHT_*)
Elf32_Word sh_flags; // Section flags (SHF_*)
Elf32_Addr sh_addr; // Address where section is to be loaded
Elf32_Off sh_offset; // File offset of section data, in bytes
Elf32_Word sh_size; // Size of section, in bytes
Elf32_Word sh_link; // Section type-specific header table index link
Elf32_Word sh_info; // Section type-specific extra information
Elf32_Word sh_addralign; // Section address alignment
Elf32_Word sh_entsize; // Size of records contained within the section
};
// Section header for ELF64 - same fields as ELF32, different types.
struct Elf64_Shdr {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;
};
// Special section indices.
enum {
SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
SHN_LORESERVE = 0xff00, // Lowest reserved index
SHN_LOPROC = 0xff00, // Lowest processor-specific index
SHN_HIPROC = 0xff1f, // Highest processor-specific index
SHN_LOOS = 0xff20, // Lowest operating system-specific index
SHN_HIOS = 0xff3f, // Highest operating system-specific index
SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
SHN_HIRESERVE = 0xffff // Highest reserved index
};
// Section types.
enum {
SHT_NULL = 0, // No associated section (inactive entry).
SHT_PROGBITS = 1, // Program-defined contents.
SHT_SYMTAB = 2, // Symbol table.
SHT_STRTAB = 3, // String table.
SHT_RELA = 4, // Relocation entries; explicit addends.
SHT_HASH = 5, // Symbol hash table.
SHT_DYNAMIC = 6, // Information for dynamic linking.
SHT_NOTE = 7, // Information about the file.
SHT_NOBITS = 8, // Data occupies no space in the file.
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
SHT_GROUP = 17, // Section group.
SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
// Fixme: All this is duplicated in MCSectionELF. Why??
// Exception Index table
SHT_ARM_EXIDX = 0x70000001U,
// BPABI DLL dynamic linking pre-emption map
SHT_ARM_PREEMPTMAP = 0x70000002U,
// Object file compatibility attributes
SHT_ARM_ATTRIBUTES = 0x70000003U,
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
SHT_ARM_OVERLAYSECTION = 0x70000005U,
SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
// this section based on their sizes
SHT_X86_64_UNWIND = 0x70000001, // Unwind information
SHT_MIPS_REGINFO = 0x70000006, // Register usage information
SHT_MIPS_OPTIONS = 0x7000000d, // General options
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
// Section flags.
enum {
// Section data should be writable during execution.
SHF_WRITE = 0x1,
// Section occupies memory during program execution.
SHF_ALLOC = 0x2,
// Section contains executable machine instructions.
SHF_EXECINSTR = 0x4,
// The data in this section may be merged.
SHF_MERGE = 0x10,
// The data in this section is null-terminated strings.
SHF_STRINGS = 0x20,
// A field in this section holds a section header table index.
SHF_INFO_LINK = 0x40U,
// Adds special ordering requirements for link editors.
SHF_LINK_ORDER = 0x80U,
// This section requires special OS-specific processing to avoid incorrect
// behavior.
SHF_OS_NONCONFORMING = 0x100U,
// This section is a member of a section group.
SHF_GROUP = 0x200U,
// This section holds Thread-Local Storage.
SHF_TLS = 0x400U,
// Start of target-specific flags.
/// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
/// together by the linker to form the constant pool and the cp register is
/// set to the start of the constant pool by the boot code.
XCORE_SHF_CP_SECTION = 0x800U,
/// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
/// together by the linker to form the data section and the dp register is
/// set to the start of the section by the boot code.
XCORE_SHF_DP_SECTION = 0x1000U,
SHF_MASKOS = 0x0ff00000,
// Bits indicating processor-specific flags.
SHF_MASKPROC = 0xf0000000,
// If an object file section does not have this flag set, then it may not hold
// more than 2GB and can be freely referred to in objects using smaller code
// models. Otherwise, only objects using larger code models can refer to them.
// For example, a medium code model object can refer to data in a section that
// sets this flag besides being able to refer to data in a section that does
// not set it; likewise, a small code model object can refer only to code in a
// section that does not set this flag.
SHF_X86_64_LARGE = 0x10000000,
// All sections with the GPREL flag are grouped into a global data area
// for faster accesses
SHF_HEX_GPREL = 0x10000000,
// Do not strip this section. FIXME: We need target specific SHF_ enums.
SHF_MIPS_NOSTRIP = 0x8000000
};
// Section Group Flags
enum {
GRP_COMDAT = 0x1,
GRP_MASKOS = 0x0ff00000,
GRP_MASKPROC = 0xf0000000
};
// Symbol table entries for ELF32.
struct Elf32_Sym {
Elf32_Word st_name; // Symbol name (index into string table)
Elf32_Addr st_value; // Value or address associated with the symbol
Elf32_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf32_Half st_shndx; // Which section (header table index) it's defined in
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// Symbol table entries for ELF64.
struct Elf64_Sym {
Elf64_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
Elf64_Addr st_value; // Value or address associated with the symbol
Elf64_Xword st_size; // Size of the symbol
// These accessors and mutators are identical to those defined for ELF32
// symbol table entries.
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// The size (in bytes) of symbol table entries.
enum {
SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
};
// Symbol bindings.
enum {
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
STB_LOOS = 10, // Lowest operating system-specific binding type
STB_HIOS = 12, // Highest operating system-specific binding type
STB_LOPROC = 13, // Lowest processor-specific binding type
STB_HIPROC = 15 // Highest processor-specific binding type
};
// Symbol types.
enum {
STT_NOTYPE = 0, // Symbol's type is not specified
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
STT_FUNC = 2, // Symbol is executable code (function, etc.)
STT_SECTION = 3, // Symbol refers to a section
STT_FILE = 4, // Local, absolute symbol that refers to a file
STT_COMMON = 5, // An uninitialized common block
STT_TLS = 6, // Thread local data object
STT_LOOS = 7, // Lowest operating system-specific symbol type
STT_HIOS = 8, // Highest operating system-specific symbol type
STT_GNU_IFUNC = 10, // GNU indirect function
STT_LOPROC = 13, // Lowest processor-specific symbol type
STT_HIPROC = 15 // Highest processor-specific symbol type
};
enum {
STV_DEFAULT = 0, // Visibility is specified by binding type
STV_INTERNAL = 1, // Defined by processor supplements
STV_HIDDEN = 2, // Not visible to other components
STV_PROTECTED = 3 // Visible in other components but not preemptable
};
// Symbol number.
enum {
STN_UNDEF = 0
};
// Relocation entry, without explicit addend.
struct Elf32_Rel {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry with explicit addend.
struct Elf32_Rela {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
Elf32_Sword r_addend; // Compute value for relocatable field by adding this
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry, without explicit addend.
struct Elf64_Rel {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Word getSymbol() const { return (r_info >> 32); }
Elf64_Word getType() const {
return (Elf64_Word) (r_info & 0xffffffffL);
}
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
}
};
// Relocation entry with explicit addend.
struct Elf64_Rela {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Word getSymbol() const { return (r_info >> 32); }
Elf64_Word getType() const {
return (Elf64_Word) (r_info & 0xffffffffL);
}
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
}
};
// Program header for ELF32.
struct Elf32_Phdr {
Elf32_Word p_type; // Type of segment
Elf32_Off p_offset; // File offset where segment is located, in bytes
Elf32_Addr p_vaddr; // Virtual address of beginning of segment
Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf32_Word p_flags; // Segment flags
Elf32_Word p_align; // Segment alignment constraint
};
// Program header for ELF64.
struct Elf64_Phdr {
Elf64_Word p_type; // Type of segment
Elf64_Word p_flags; // Segment flags
Elf64_Off p_offset; // File offset where segment is located, in bytes
Elf64_Addr p_vaddr; // Virtual address of beginning of segment
Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf64_Xword p_align; // Segment alignment constraint
};
// Segment types.
enum {
PT_NULL = 0, // Unused segment.
PT_LOAD = 1, // Loadable segment.
PT_DYNAMIC = 2, // Dynamic linking information.
PT_INTERP = 3, // Interpreter pathname.
PT_NOTE = 4, // Auxiliary information.
PT_SHLIB = 5, // Reserved.
PT_PHDR = 6, // The program header table itself.
PT_TLS = 7, // The thread-local storage template.
PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
// x86-64 program header types.
// These all contain stack unwind tables.
PT_GNU_EH_FRAME = 0x6474e550,
PT_SUNW_EH_FRAME = 0x6474e550,
PT_SUNW_UNWIND = 0x6464e550,
PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
// ARM program header types.
PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
// These all contain stack unwind tables.
PT_ARM_EXIDX = 0x70000001,
PT_ARM_UNWIND = 0x70000001
};
// Segment flag bits.
enum {
PF_X = 1, // Execute
PF_W = 2, // Write
PF_R = 4, // Read
PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
};
// Dynamic table entry for ELF32.
struct Elf32_Dyn
{
Elf32_Sword d_tag; // Type of dynamic table entry.
union
{
Elf32_Word d_val; // Integer value of entry.
Elf32_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry for ELF64.
struct Elf64_Dyn
{
Elf64_Sxword d_tag; // Type of dynamic table entry.
union
{
Elf64_Xword d_val; // Integer value of entry.
Elf64_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry tags.
enum {
DT_NULL = 0, // Marks end of dynamic array.
DT_NEEDED = 1, // String table offset of needed library.
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
DT_PLTGOT = 3, // Address associated with linkage table.
DT_HASH = 4, // Address of symbolic hash table.
DT_STRTAB = 5, // Address of dynamic string table.
DT_SYMTAB = 6, // Address of dynamic symbol table.
DT_RELA = 7, // Address of relocation table (Rela entries).
DT_RELASZ = 8, // Size of Rela relocation table.
DT_RELAENT = 9, // Size of a Rela relocation entry.
DT_STRSZ = 10, // Total size of the string table.
DT_SYMENT = 11, // Size of a symbol table entry.
DT_INIT = 12, // Address of initialization function.
DT_FINI = 13, // Address of termination function.
DT_SONAME = 14, // String table offset of a shared objects name.
DT_RPATH = 15, // String table offset of library search path.
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
DT_REL = 17, // Address of relocation table (Rel entries).
DT_RELSZ = 18, // Size of Rel relocation table.
DT_RELENT = 19, // Size of a Rel relocation entry.
DT_PLTREL = 20, // Type of relocation entry used for linking.
DT_DEBUG = 21, // Reserved for debugger.
DT_TEXTREL = 22, // Relocations exist for non-writable segments.
DT_JMPREL = 23, // Address of relocations associated with PLT.
DT_BIND_NOW = 24, // Process all relocations before execution.
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
DT_RUNPATH = 29, // String table offset of lib search path.
DT_FLAGS = 30, // Flags.
DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
// for the interpretation of the d_un union.
DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
DT_LOOS = 0x60000000, // Start of environment specific tags.
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
DT_LOPROC = 0x70000000, // Start of processor specific tags.
DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
DT_VERNEEDNUM = 0X6FFFFFFF // The number of entries in DT_VERNEED.
};
// DT_FLAGS values.
enum {
DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
DF_BIND_NOW = 0x08, // Process all relocations on load.
DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
};
// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
enum {
DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
DF_1_DIRECT = 0x00000100, // Direct binding enabled.
DF_1_TRANS = 0x00000200,
DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
DF_1_CONFALT = 0x00002000, // Configuration alternative created.
DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time.
};
// ElfXX_VerDef structure version (GNU versioning)
enum {
VER_DEF_NONE = 0,
VER_DEF_CURRENT = 1
};
// VerDef Flags (ElfXX_VerDef::vd_flags)
enum {
VER_FLG_BASE = 0x1,
VER_FLG_WEAK = 0x2,
VER_FLG_INFO = 0x4
};
// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
enum {
VER_NDX_LOCAL = 0, // Unversioned local symbol
VER_NDX_GLOBAL = 1, // Unversioned global symbol
VERSYM_VERSION = 0x7fff, // Version Index mask
VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
};
// ElfXX_VerNeed structure version (GNU versioning)
enum {
VER_NEED_NONE = 0,
VER_NEED_CURRENT = 1
};
} // end namespace ELF
} // end namespace llvm
#endif