llvm-6502/lib/Support/ConstantRange.cpp

362 lines
12 KiB
C++
Raw Normal View History

//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConstantRange.h"
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Streams.h"
#include <ostream>
using namespace llvm;
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(const Type *Ty, bool Full) :
Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
if (Full)
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(Constant *V)
: Lower(cast<ConstantInt>(V)->getValue()),
Upper(cast<ConstantInt>(V)->getValue() + 1) { }
/// Initialize a range of values explicitly... this will assert out if
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
/// have different types)
///
ConstantRange::ConstantRange(Constant *L, Constant *U)
: Lower(cast<ConstantInt>(L)->getValue()),
Upper(cast<ConstantInt>(U)->getValue()) {
assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
// Make sure that if L & U are equal that they are either Min or Max...
uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
const IntegerType *Ty = cast<IntegerType>(L->getType());
assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
|| L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
&& "Lower == Upper, but they aren't min or max for type!");
}
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
uint32_t BitWidth = L.getBitWidth();
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
L == APInt::getMinValue(BitWidth))) &&
"Lower == Upper, but they aren't min or max value!");
}
/// Initialize a set of values that all satisfy the condition with C.
///
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
: Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
const APInt& Val = C->getValue();
uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
switch (ICmpOpcode) {
default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
case ICmpInst::ICMP_ULT:
Lower = APInt::getMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_SLT:
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_UGT:
Lower = Val + 1;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGT:
Lower = Val + 1;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_ULE:
Lower = APInt::getMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_SLE:
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_UGE:
Lower = Val;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGE:
Lower = Val;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
}
}
/// getType - Return the LLVM data type of this range.
///
const Type *ConstantRange::getType() const {
return IntegerType::get(Lower.getBitWidth());
}
ConstantInt *ConstantRange::getLower() const {
return ConstantInt::get(getType(), Lower);
}
ConstantInt *ConstantRange::getUpper() const {
return ConstantInt::get(getType(), Upper);
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet(bool isSigned) const {
if (isSigned)
return Lower.sgt(Upper);
return Lower.ugt(Upper);
}
/// getSingleElement - If this set contains a single element, return it,
/// otherwise return null.
ConstantInt *ConstantRange::getSingleElement() const {
if (Upper == Lower + 1) // Is it a single element range?
return ConstantInt::get(getType(), Lower);
return 0;
}
/// getSetSize - Return the number of elements in this set.
///
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(Lower.getBitWidth(), 0);
if (getType() == Type::Int1Ty) {
if (Lower != Upper) // One of T or F in the set...
return APInt(Lower.getBitWidth(), 1);
return APInt(Lower.getBitWidth(), 2); // Must be full set...
}
// Simply subtract the bounds...
return Upper - Lower;
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
if (Lower == Upper) {
if (isFullSet())
return true;
return false;
}
const APInt &V = Val->getValue();
if (!isWrappedSet(isSigned))
if (isSigned)
return Lower.sle(V) && V.slt(Upper);
else
return Lower.ule(V) && V.ult(Upper);
if (isSigned)
return Lower.sle(V) || V.slt(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
assert(CI->getType() == getType() &&
"Cannot subtract from different type range or non-integer!");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
const APInt &Val = CI->getValue();
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS, bool isSigned) {
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
// Check to see if we overlap on the Left side of RHS...
//
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
if (LT) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (GT) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
} else {
// No overlap on the right, just on the left.
return ConstantRange(RHS.getLower(), LHS.getUpper());
}
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (GT) {
// Simple overlap...
return ConstantRange(LHS.getLower(), RHS.getUpper());
} else {
// No overlap...
return ConstantRange(LHS.getType(), false);
}
}
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet(isSigned)) {
if (!CR.isWrappedSet(isSigned)) {
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getType(), false); // Otherwise, return empty set
} else
return intersect1Wrapped(CR, *this, isSigned);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet(isSigned))
return intersect1Wrapped(*this, CR, isSigned);
else {
// Both ranges are wrapped...
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
return *this;
}
/// unionWith - Return the range that results from the union of this range with
/// another range. The resultant range is guaranteed to include the elements of
/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3,
/// 15), which includes 9, 10, and 11, which were not included in either set
/// before.
///
ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
assert(0 && "Range union not implemented yet!");
return *this;
}
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(Constant::getNullValue(Ty),
ConstantInt::get(Ty, 1ULL << SrcTySize));
}
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(const Type *Ty) const {
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(getType());
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(std::ostream &OS) const {
OS << "[" << Lower.toStringSigned(10) << ","
<< Upper.toStringSigned(10) << " )";
}
/// dump - Allow printing from a debugger easily...
///
void ConstantRange::dump() const {
print(cerr);
}