llvm-6502/lib/Support/Timer.cpp

424 lines
12 KiB
C++
Raw Normal View History

//===-- Timer.cpp - Interval Timing Support -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interval Timing implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Timer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Format.h"
#include "llvm/System/Process.h"
#include <algorithm>
#include <functional>
#include <map>
using namespace llvm;
// GetLibSupportInfoOutputFile - Return a file stream to print our output on.
namespace llvm { extern raw_ostream *GetLibSupportInfoOutputFile(); }
// getLibSupportInfoOutputFilename - This ugly hack is brought to you courtesy
// of constructor/destructor ordering being unspecified by C++. Basically the
// problem is that a Statistic object gets destroyed, which ends up calling
// 'GetLibSupportInfoOutputFile()' (below), which calls this function.
// LibSupportInfoOutputFilename used to be a global variable, but sometimes it
// would get destroyed before the Statistic, causing havoc to ensue. We "fix"
// this by creating the string the first time it is needed and never destroying
// it.
static ManagedStatic<std::string> LibSupportInfoOutputFilename;
static std::string &getLibSupportInfoOutputFilename() {
return *LibSupportInfoOutputFilename;
}
static ManagedStatic<sys::SmartMutex<true> > TimerLock;
namespace {
static cl::opt<bool>
TrackSpace("track-memory", cl::desc("Enable -time-passes memory "
"tracking (this may be slow)"),
cl::Hidden);
static cl::opt<std::string, true>
InfoOutputFilename("info-output-file", cl::value_desc("filename"),
cl::desc("File to append -stats and -timer output to"),
cl::Hidden, cl::location(getLibSupportInfoOutputFilename()));
}
static TimerGroup *DefaultTimerGroup = 0;
static TimerGroup *getDefaultTimerGroup() {
TimerGroup* tmp = DefaultTimerGroup;
sys::MemoryFence();
if (!tmp) {
llvm_acquire_global_lock();
tmp = DefaultTimerGroup;
if (!tmp) {
tmp = new TimerGroup("Miscellaneous Ungrouped Timers");
sys::MemoryFence();
DefaultTimerGroup = tmp;
}
llvm_release_global_lock();
}
return tmp;
}
Timer::Timer(const std::string &N)
: Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
Started(false), TG(getDefaultTimerGroup()) {
TG->addTimer();
}
Timer::Timer(const std::string &N, TimerGroup &tg)
: Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
Started(false), TG(&tg) {
TG->addTimer();
}
Timer::Timer(const Timer &T) {
TG = T.TG;
if (TG) TG->addTimer();
operator=(T);
}
// Copy ctor, initialize with no TG member.
Timer::Timer(bool, const Timer &T) {
TG = T.TG; // Avoid assertion in operator=
operator=(T); // Copy contents
TG = 0;
}
Timer::~Timer() {
if (TG) {
if (Started) {
Started = false;
TG->addTimerToPrint(*this);
}
TG->removeTimer();
}
}
static inline size_t getMemUsage() {
if (TrackSpace)
return sys::Process::GetMallocUsage();
return 0;
}
struct TimeRecord {
double Elapsed, UserTime, SystemTime;
ssize_t MemUsed;
};
static TimeRecord getTimeRecord(bool Start) {
TimeRecord Result;
sys::TimeValue now(0,0);
sys::TimeValue user(0,0);
sys::TimeValue sys(0,0);
ssize_t MemUsed = 0;
if (Start) {
MemUsed = getMemUsage();
sys::Process::GetTimeUsage(now,user,sys);
} else {
sys::Process::GetTimeUsage(now,user,sys);
MemUsed = getMemUsage();
}
Result.Elapsed = now.seconds() + now.microseconds() / 1000000.0;
Result.UserTime = user.seconds() + user.microseconds() / 1000000.0;
Result.SystemTime = sys.seconds() + sys.microseconds() / 1000000.0;
Result.MemUsed = MemUsed;
return Result;
}
static ManagedStatic<std::vector<Timer*> > ActiveTimers;
void Timer::startTimer() {
sys::SmartScopedLock<true> L(Lock);
Started = true;
ActiveTimers->push_back(this);
TimeRecord TR = getTimeRecord(true);
Elapsed -= TR.Elapsed;
UserTime -= TR.UserTime;
SystemTime -= TR.SystemTime;
MemUsed -= TR.MemUsed;
PeakMemBase = TR.MemUsed;
}
void Timer::stopTimer() {
sys::SmartScopedLock<true> L(Lock);
TimeRecord TR = getTimeRecord(false);
Elapsed += TR.Elapsed;
UserTime += TR.UserTime;
SystemTime += TR.SystemTime;
MemUsed += TR.MemUsed;
if (ActiveTimers->back() == this) {
ActiveTimers->pop_back();
} else {
std::vector<Timer*>::iterator I =
std::find(ActiveTimers->begin(), ActiveTimers->end(), this);
assert(I != ActiveTimers->end() && "stop but no startTimer?");
ActiveTimers->erase(I);
}
}
void Timer::sum(const Timer &T) {
if (&T < this) {
T.Lock.acquire();
Lock.acquire();
} else {
Lock.acquire();
T.Lock.acquire();
}
Elapsed += T.Elapsed;
UserTime += T.UserTime;
SystemTime += T.SystemTime;
MemUsed += T.MemUsed;
PeakMem += T.PeakMem;
if (&T < this) {
T.Lock.release();
Lock.release();
} else {
Lock.release();
T.Lock.release();
}
}
/// addPeakMemoryMeasurement - This method should be called whenever memory
/// usage needs to be checked. It adds a peak memory measurement to the
/// currently active timers, which will be printed when the timer group prints
///
void Timer::addPeakMemoryMeasurement() {
size_t MemUsed = getMemUsage();
for (std::vector<Timer*>::iterator I = ActiveTimers->begin(),
E = ActiveTimers->end(); I != E; ++I) {
(*I)->Lock.acquire();
(*I)->PeakMem = std::max((*I)->PeakMem, MemUsed-(*I)->PeakMemBase);
(*I)->Lock.release();
}
}
//===----------------------------------------------------------------------===//
// NamedRegionTimer Implementation
//===----------------------------------------------------------------------===//
namespace {
typedef std::map<std::string, Timer> Name2Timer;
typedef std::map<std::string, std::pair<TimerGroup, Name2Timer> > Name2Pair;
}
static ManagedStatic<Name2Timer> NamedTimers;
static ManagedStatic<Name2Pair> NamedGroupedTimers;
static Timer &getNamedRegionTimer(const std::string &Name) {
sys::SmartScopedLock<true> L(*TimerLock);
Name2Timer::iterator I = NamedTimers->find(Name);
if (I != NamedTimers->end())
return I->second;
return NamedTimers->insert(I, std::make_pair(Name, Timer(Name)))->second;
}
static Timer &getNamedRegionTimer(const std::string &Name,
const std::string &GroupName) {
sys::SmartScopedLock<true> L(*TimerLock);
Name2Pair::iterator I = NamedGroupedTimers->find(GroupName);
if (I == NamedGroupedTimers->end()) {
TimerGroup TG(GroupName);
std::pair<TimerGroup, Name2Timer> Pair(TG, Name2Timer());
I = NamedGroupedTimers->insert(I, std::make_pair(GroupName, Pair));
}
Name2Timer::iterator J = I->second.second.find(Name);
if (J == I->second.second.end())
J = I->second.second.insert(J,
std::make_pair(Name,
Timer(Name,
I->second.first)));
return J->second;
}
NamedRegionTimer::NamedRegionTimer(const std::string &Name)
: TimeRegion(getNamedRegionTimer(Name)) {}
NamedRegionTimer::NamedRegionTimer(const std::string &Name,
const std::string &GroupName)
: TimeRegion(getNamedRegionTimer(Name, GroupName)) {}
//===----------------------------------------------------------------------===//
// TimerGroup Implementation
//===----------------------------------------------------------------------===//
static void printVal(double Val, double Total, raw_ostream &OS) {
if (Total < 1e-7) // Avoid dividing by zero...
OS << " ----- ";
else {
OS << " " << format("%7.4f", Val) << " (";
OS << format("%5.1f", Val*100/Total) << "%)";
}
}
void Timer::print(const Timer &Total, raw_ostream &OS) {
if (&Total < this) {
Total.Lock.acquire();
Lock.acquire();
} else {
Lock.acquire();
Total.Lock.acquire();
}
if (Total.UserTime)
printVal(UserTime, Total.UserTime, OS);
if (Total.SystemTime)
printVal(SystemTime, Total.SystemTime, OS);
if (Total.getProcessTime())
printVal(getProcessTime(), Total.getProcessTime(), OS);
printVal(Elapsed, Total.Elapsed, OS);
OS << " ";
if (Total.MemUsed) {
OS << format("%9lld", (long long)MemUsed) << " ";
}
if (Total.PeakMem) {
if (PeakMem) {
OS << format("%9lld", (long long)PeakMem) << " ";
} else
OS << " ";
}
OS << Name << "\n";
Started = false; // Once printed, don't print again
if (&Total < this) {
Total.Lock.release();
Lock.release();
} else {
Lock.release();
Total.Lock.release();
}
}
// GetLibSupportInfoOutputFile - Return a file stream to print our output on...
raw_ostream *
llvm::GetLibSupportInfoOutputFile() {
std::string &LibSupportInfoOutputFilename = getLibSupportInfoOutputFilename();
if (LibSupportInfoOutputFilename.empty())
return &errs();
if (LibSupportInfoOutputFilename == "-")
return &outs();
std::string Error;
raw_ostream *Result = new raw_fd_ostream(LibSupportInfoOutputFilename.c_str(),
Error, raw_fd_ostream::F_Append);
if (Error.empty())
return Result;
errs() << "Error opening info-output-file '"
<< LibSupportInfoOutputFilename << " for appending!\n";
delete Result;
return &errs();
}
void TimerGroup::removeTimer() {
sys::SmartScopedLock<true> L(*TimerLock);
if (--NumTimers == 0 && !TimersToPrint.empty()) { // Print timing report...
// Sort the timers in descending order by amount of time taken...
std::sort(TimersToPrint.begin(), TimersToPrint.end(),
std::greater<Timer>());
// Figure out how many spaces to indent TimerGroup name...
unsigned Padding = (80-Name.length())/2;
if (Padding > 80) Padding = 0; // Don't allow "negative" numbers
raw_ostream *OutStream = GetLibSupportInfoOutputFile();
++NumTimers;
{ // Scope to contain Total timer... don't allow total timer to drop us to
// zero timers...
Timer Total("TOTAL");
for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
Total.sum(TimersToPrint[i]);
// Print out timing header...
*OutStream << "===" << std::string(73, '-') << "===\n"
<< std::string(Padding, ' ') << Name << "\n"
<< "===" << std::string(73, '-')
<< "===\n";
// If this is not an collection of ungrouped times, print the total time.
// Ungrouped timers don't really make sense to add up. We still print the
// TOTAL line to make the percentages make sense.
if (this != DefaultTimerGroup) {
*OutStream << " Total Execution Time: ";
*OutStream << format("%5.4f", Total.getProcessTime()) << " seconds (";
*OutStream << format("%5.4f", Total.getWallTime()) << " wall clock)\n";
}
*OutStream << "\n";
if (Total.UserTime)
*OutStream << " ---User Time---";
if (Total.SystemTime)
*OutStream << " --System Time--";
if (Total.getProcessTime())
*OutStream << " --User+System--";
*OutStream << " ---Wall Time---";
if (Total.getMemUsed())
*OutStream << " ---Mem---";
if (Total.getPeakMem())
*OutStream << " -PeakMem-";
*OutStream << " --- Name ---\n";
// Loop through all of the timing data, printing it out...
for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
TimersToPrint[i].print(Total, *OutStream);
Total.print(Total, *OutStream);
*OutStream << '\n';
OutStream->flush();
}
--NumTimers;
TimersToPrint.clear();
if (OutStream != &errs() && OutStream != &outs())
delete OutStream; // Close the file...
}
}
void TimerGroup::addTimer() {
sys::SmartScopedLock<true> L(*TimerLock);
++NumTimers;
}
void TimerGroup::addTimerToPrint(const Timer &T) {
sys::SmartScopedLock<true> L(*TimerLock);
TimersToPrint.push_back(Timer(true, T));
}