llvm-6502/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp

966 lines
33 KiB
C++
Raw Normal View History

//=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs load / store related peephole
// optimizations. This pass should be run after register allocation.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-ldst-opt"
/// AArch64AllocLoadStoreOpt - Post-register allocation pass to combine
/// load / store instructions to form ldp / stp instructions.
STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
STATISTIC(NumPostFolded, "Number of post-index updates folded");
STATISTIC(NumPreFolded, "Number of pre-index updates folded");
STATISTIC(NumUnscaledPairCreated,
"Number of load/store from unscaled generated");
static cl::opt<unsigned> ScanLimit("aarch64-load-store-scan-limit",
cl::init(20), cl::Hidden);
// Place holder while testing unscaled load/store combining
static cl::opt<bool> EnableAArch64UnscaledMemOp(
"aarch64-unscaled-mem-op", cl::Hidden,
cl::desc("Allow AArch64 unscaled load/store combining"), cl::init(true));
namespace {
struct AArch64LoadStoreOpt : public MachineFunctionPass {
static char ID;
AArch64LoadStoreOpt() : MachineFunctionPass(ID) {}
const AArch64InstrInfo *TII;
const TargetRegisterInfo *TRI;
// Scan the instructions looking for a load/store that can be combined
// with the current instruction into a load/store pair.
// Return the matching instruction if one is found, else MBB->end().
// If a matching instruction is found, MergeForward is set to true if the
// merge is to remove the first instruction and replace the second with
// a pair-wise insn, and false if the reverse is true.
MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
bool &MergeForward,
unsigned Limit);
// Merge the two instructions indicated into a single pair-wise instruction.
// If MergeForward is true, erase the first instruction and fold its
// operation into the second. If false, the reverse. Return the instruction
// following the first instruction (which may change during processing).
MachineBasicBlock::iterator
mergePairedInsns(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired, bool MergeForward);
// Scan the instruction list to find a base register update that can
// be combined with the current instruction (a load or store) using
// pre or post indexed addressing with writeback. Scan forwards.
MachineBasicBlock::iterator
findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, unsigned Limit,
int Value);
// Scan the instruction list to find a base register update that can
// be combined with the current instruction (a load or store) using
// pre or post indexed addressing with writeback. Scan backwards.
MachineBasicBlock::iterator
findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
// Merge a pre-index base register update into a ld/st instruction.
MachineBasicBlock::iterator
mergePreIdxUpdateInsn(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Update);
// Merge a post-index base register update into a ld/st instruction.
MachineBasicBlock::iterator
mergePostIdxUpdateInsn(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Update);
bool optimizeBlock(MachineBasicBlock &MBB);
bool runOnMachineFunction(MachineFunction &Fn) override;
const char *getPassName() const override {
return "AArch64 load / store optimization pass";
}
private:
int getMemSize(MachineInstr *MemMI);
};
char AArch64LoadStoreOpt::ID = 0;
} // namespace
static bool isUnscaledLdst(unsigned Opc) {
switch (Opc) {
default:
return false;
case AArch64::STURSi:
return true;
case AArch64::STURDi:
return true;
case AArch64::STURQi:
return true;
case AArch64::STURWi:
return true;
case AArch64::STURXi:
return true;
case AArch64::LDURSi:
return true;
case AArch64::LDURDi:
return true;
case AArch64::LDURQi:
return true;
case AArch64::LDURWi:
return true;
case AArch64::LDURXi:
return true;
case AArch64::LDURSWi:
return true;
}
}
// Size in bytes of the data moved by an unscaled load or store
int AArch64LoadStoreOpt::getMemSize(MachineInstr *MemMI) {
switch (MemMI->getOpcode()) {
default:
llvm_unreachable("Opcode has unknown size!");
case AArch64::STRSui:
case AArch64::STURSi:
return 4;
case AArch64::STRDui:
case AArch64::STURDi:
return 8;
case AArch64::STRQui:
case AArch64::STURQi:
return 16;
case AArch64::STRWui:
case AArch64::STURWi:
return 4;
case AArch64::STRXui:
case AArch64::STURXi:
return 8;
case AArch64::LDRSui:
case AArch64::LDURSi:
return 4;
case AArch64::LDRDui:
case AArch64::LDURDi:
return 8;
case AArch64::LDRQui:
case AArch64::LDURQi:
return 16;
case AArch64::LDRWui:
case AArch64::LDURWi:
return 4;
case AArch64::LDRXui:
case AArch64::LDURXi:
return 8;
case AArch64::LDRSWui:
case AArch64::LDURSWi:
return 4;
}
}
static unsigned getMatchingPairOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no pairwise equivalent!");
case AArch64::STRSui:
case AArch64::STURSi:
return AArch64::STPSi;
case AArch64::STRDui:
case AArch64::STURDi:
return AArch64::STPDi;
case AArch64::STRQui:
case AArch64::STURQi:
return AArch64::STPQi;
case AArch64::STRWui:
case AArch64::STURWi:
return AArch64::STPWi;
case AArch64::STRXui:
case AArch64::STURXi:
return AArch64::STPXi;
case AArch64::LDRSui:
case AArch64::LDURSi:
return AArch64::LDPSi;
case AArch64::LDRDui:
case AArch64::LDURDi:
return AArch64::LDPDi;
case AArch64::LDRQui:
case AArch64::LDURQi:
return AArch64::LDPQi;
case AArch64::LDRWui:
case AArch64::LDURWi:
return AArch64::LDPWi;
case AArch64::LDRXui:
case AArch64::LDURXi:
return AArch64::LDPXi;
case AArch64::LDRSWui:
case AArch64::LDURSWi:
return AArch64::LDPSWi;
}
}
static unsigned getPreIndexedOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no pre-indexed equivalent!");
case AArch64::STRSui:
return AArch64::STRSpre;
case AArch64::STRDui:
return AArch64::STRDpre;
case AArch64::STRQui:
return AArch64::STRQpre;
case AArch64::STRWui:
return AArch64::STRWpre;
case AArch64::STRXui:
return AArch64::STRXpre;
case AArch64::LDRSui:
return AArch64::LDRSpre;
case AArch64::LDRDui:
return AArch64::LDRDpre;
case AArch64::LDRQui:
return AArch64::LDRQpre;
case AArch64::LDRWui:
return AArch64::LDRWpre;
case AArch64::LDRXui:
return AArch64::LDRXpre;
case AArch64::LDRSWui:
return AArch64::LDRSWpre;
}
}
static unsigned getPostIndexedOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no post-indexed wise equivalent!");
case AArch64::STRSui:
return AArch64::STRSpost;
case AArch64::STRDui:
return AArch64::STRDpost;
case AArch64::STRQui:
return AArch64::STRQpost;
case AArch64::STRWui:
return AArch64::STRWpost;
case AArch64::STRXui:
return AArch64::STRXpost;
case AArch64::LDRSui:
return AArch64::LDRSpost;
case AArch64::LDRDui:
return AArch64::LDRDpost;
case AArch64::LDRQui:
return AArch64::LDRQpost;
case AArch64::LDRWui:
return AArch64::LDRWpost;
case AArch64::LDRXui:
return AArch64::LDRXpost;
case AArch64::LDRSWui:
return AArch64::LDRSWpost;
}
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired,
bool MergeForward) {
MachineBasicBlock::iterator NextI = I;
++NextI;
// If NextI is the second of the two instructions to be merged, we need
// to skip one further. Either way we merge will invalidate the iterator,
// and we don't need to scan the new instruction, as it's a pairwise
// instruction, which we're not considering for further action anyway.
if (NextI == Paired)
++NextI;
bool IsUnscaled = isUnscaledLdst(I->getOpcode());
int OffsetStride =
IsUnscaled && EnableAArch64UnscaledMemOp ? getMemSize(I) : 1;
unsigned NewOpc = getMatchingPairOpcode(I->getOpcode());
// Insert our new paired instruction after whichever of the paired
// instructions MergeForward indicates.
MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
// Also based on MergeForward is from where we copy the base register operand
// so we get the flags compatible with the input code.
MachineOperand &BaseRegOp =
MergeForward ? Paired->getOperand(1) : I->getOperand(1);
// Which register is Rt and which is Rt2 depends on the offset order.
MachineInstr *RtMI, *Rt2MI;
if (I->getOperand(2).getImm() ==
Paired->getOperand(2).getImm() + OffsetStride) {
RtMI = Paired;
Rt2MI = I;
} else {
RtMI = I;
Rt2MI = Paired;
}
// Handle Unscaled
int OffsetImm = RtMI->getOperand(2).getImm();
if (IsUnscaled && EnableAArch64UnscaledMemOp)
OffsetImm /= OffsetStride;
// Construct the new instruction.
MachineInstrBuilder MIB = BuildMI(*I->getParent(), InsertionPoint,
I->getDebugLoc(), TII->get(NewOpc))
.addOperand(RtMI->getOperand(0))
.addOperand(Rt2MI->getOperand(0))
.addOperand(BaseRegOp)
.addImm(OffsetImm);
(void)MIB;
// FIXME: Do we need/want to copy the mem operands from the source
// instructions? Probably. What uses them after this?
DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n ");
DEBUG(I->print(dbgs()));
DEBUG(dbgs() << " ");
DEBUG(Paired->print(dbgs()));
DEBUG(dbgs() << " with instruction:\n ");
DEBUG(((MachineInstr *)MIB)->print(dbgs()));
DEBUG(dbgs() << "\n");
// Erase the old instructions.
I->eraseFromParent();
Paired->eraseFromParent();
return NextI;
}
/// trackRegDefsUses - Remember what registers the specified instruction uses
/// and modifies.
static void trackRegDefsUses(MachineInstr *MI, BitVector &ModifiedRegs,
BitVector &UsedRegs,
const TargetRegisterInfo *TRI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isRegMask())
ModifiedRegs.setBitsNotInMask(MO.getRegMask());
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (MO.isDef()) {
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
ModifiedRegs.set(*AI);
} else {
assert(MO.isUse() && "Reg operand not a def and not a use?!?");
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
UsedRegs.set(*AI);
}
}
}
static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
if (!IsUnscaled && (Offset > 63 || Offset < -64))
return false;
if (IsUnscaled) {
// Convert the byte-offset used by unscaled into an "element" offset used
// by the scaled pair load/store instructions.
int ElemOffset = Offset / OffsetStride;
if (ElemOffset > 63 || ElemOffset < -64)
return false;
}
return true;
}
// Do alignment, specialized to power of 2 and for signed ints,
// avoiding having to do a C-style cast from uint_64t to int when
// using RoundUpToAlignment from include/llvm/Support/MathExtras.h.
// FIXME: Move this function to include/MathExtras.h?
static int alignTo(int Num, int PowOf2) {
return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
}
/// findMatchingInsn - Scan the instructions looking for a load/store that can
/// be combined with the current instruction into a load/store pair.
MachineBasicBlock::iterator
AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
bool &MergeForward, unsigned Limit) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator MBBI = I;
MachineInstr *FirstMI = I;
++MBBI;
int Opc = FirstMI->getOpcode();
bool MayLoad = FirstMI->mayLoad();
bool IsUnscaled = isUnscaledLdst(Opc);
unsigned Reg = FirstMI->getOperand(0).getReg();
unsigned BaseReg = FirstMI->getOperand(1).getReg();
int Offset = FirstMI->getOperand(2).getImm();
// Early exit if the first instruction modifies the base register.
// e.g., ldr x0, [x0]
// Early exit if the offset if not possible to match. (6 bits of positive
// range, plus allow an extra one in case we find a later insn that matches
// with Offset-1
if (FirstMI->modifiesRegister(BaseReg, TRI))
return E;
int OffsetStride =
IsUnscaled && EnableAArch64UnscaledMemOp ? getMemSize(FirstMI) : 1;
if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
return E;
// Track which registers have been modified and used between the first insn
// (inclusive) and the second insn.
BitVector ModifiedRegs, UsedRegs;
ModifiedRegs.resize(TRI->getNumRegs());
UsedRegs.resize(TRI->getNumRegs());
for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
MachineInstr *MI = MBBI;
// Skip DBG_VALUE instructions. Otherwise debug info can affect the
// optimization by changing how far we scan.
if (MI->isDebugValue())
continue;
// Now that we know this is a real instruction, count it.
++Count;
if (Opc == MI->getOpcode() && MI->getOperand(2).isImm()) {
// If we've found another instruction with the same opcode, check to see
// if the base and offset are compatible with our starting instruction.
// These instructions all have scaled immediate operands, so we just
// check for +1/-1. Make sure to check the new instruction offset is
// actually an immediate and not a symbolic reference destined for
// a relocation.
//
// Pairwise instructions have a 7-bit signed offset field. Single insns
// have a 12-bit unsigned offset field. To be a valid combine, the
// final offset must be in range.
unsigned MIBaseReg = MI->getOperand(1).getReg();
int MIOffset = MI->getOperand(2).getImm();
if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
(Offset + OffsetStride == MIOffset))) {
int MinOffset = Offset < MIOffset ? Offset : MIOffset;
// If this is a volatile load/store that otherwise matched, stop looking
// as something is going on that we don't have enough information to
// safely transform. Similarly, stop if we see a hint to avoid pairs.
if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
return E;
// If the resultant immediate offset of merging these instructions
// is out of range for a pairwise instruction, bail and keep looking.
bool MIIsUnscaled = isUnscaledLdst(MI->getOpcode());
if (!inBoundsForPair(MIIsUnscaled, MinOffset, OffsetStride)) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
continue;
}
// If the alignment requirements of the paired (scaled) instruction
// can't express the offset of the unscaled input, bail and keep
// looking.
if (IsUnscaled && EnableAArch64UnscaledMemOp &&
(alignTo(MinOffset, OffsetStride) != MinOffset)) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
continue;
}
// If the destination register of the loads is the same register, bail
// and keep looking. A load-pair instruction with both destination
// registers the same is UNPREDICTABLE and will result in an exception.
if (MayLoad && Reg == MI->getOperand(0).getReg()) {
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
continue;
}
// If the Rt of the second instruction was not modified or used between
// the two instructions, we can combine the second into the first.
if (!ModifiedRegs[MI->getOperand(0).getReg()] &&
!UsedRegs[MI->getOperand(0).getReg()]) {
MergeForward = false;
return MBBI;
}
// Likewise, if the Rt of the first instruction is not modified or used
// between the two instructions, we can combine the first into the
// second.
if (!ModifiedRegs[FirstMI->getOperand(0).getReg()] &&
!UsedRegs[FirstMI->getOperand(0).getReg()]) {
MergeForward = true;
return MBBI;
}
// Unable to combine these instructions due to interference in between.
// Keep looking.
}
}
// If the instruction wasn't a matching load or store, but does (or can)
// modify memory, stop searching, as we don't have alias analysis or
// anything like that to tell us whether the access is tromping on the
// locations we care about. The big one we want to catch is calls.
//
// FIXME: Theoretically, we can do better than that for SP and FP based
// references since we can effectively know where those are touching. It's
// unclear if it's worth the extra code, though. Most paired instructions
// will be sequential, perhaps with a few intervening non-memory related
// instructions.
if (MI->mayStore() || MI->isCall())
return E;
// Likewise, if we're matching a store instruction, we don't want to
// move across a load, as it may be reading the same location.
if (FirstMI->mayStore() && MI->mayLoad())
return E;
// Update modified / uses register lists.
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
// Otherwise, if the base register is modified, we have no match, so
// return early.
if (ModifiedRegs[BaseReg])
return E;
}
return E;
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::mergePreIdxUpdateInsn(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Update) {
assert((Update->getOpcode() == AArch64::ADDXri ||
Update->getOpcode() == AArch64::SUBXri) &&
"Unexpected base register update instruction to merge!");
MachineBasicBlock::iterator NextI = I;
// Return the instruction following the merged instruction, which is
// the instruction following our unmerged load. Unless that's the add/sub
// instruction we're merging, in which case it's the one after that.
if (++NextI == Update)
++NextI;
int Value = Update->getOperand(2).getImm();
assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
"Can't merge 1 << 12 offset into pre-indexed load / store");
if (Update->getOpcode() == AArch64::SUBXri)
Value = -Value;
unsigned NewOpc = getPreIndexedOpcode(I->getOpcode());
MachineInstrBuilder MIB =
BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
.addOperand(Update->getOperand(0))
.addOperand(I->getOperand(0))
.addOperand(I->getOperand(1))
.addImm(Value);
(void)MIB;
DEBUG(dbgs() << "Creating pre-indexed load/store.");
DEBUG(dbgs() << " Replacing instructions:\n ");
DEBUG(I->print(dbgs()));
DEBUG(dbgs() << " ");
DEBUG(Update->print(dbgs()));
DEBUG(dbgs() << " with instruction:\n ");
DEBUG(((MachineInstr *)MIB)->print(dbgs()));
DEBUG(dbgs() << "\n");
// Erase the old instructions for the block.
I->eraseFromParent();
Update->eraseFromParent();
return NextI;
}
MachineBasicBlock::iterator AArch64LoadStoreOpt::mergePostIdxUpdateInsn(
MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update) {
assert((Update->getOpcode() == AArch64::ADDXri ||
Update->getOpcode() == AArch64::SUBXri) &&
"Unexpected base register update instruction to merge!");
MachineBasicBlock::iterator NextI = I;
// Return the instruction following the merged instruction, which is
// the instruction following our unmerged load. Unless that's the add/sub
// instruction we're merging, in which case it's the one after that.
if (++NextI == Update)
++NextI;
int Value = Update->getOperand(2).getImm();
assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
"Can't merge 1 << 12 offset into post-indexed load / store");
if (Update->getOpcode() == AArch64::SUBXri)
Value = -Value;
unsigned NewOpc = getPostIndexedOpcode(I->getOpcode());
MachineInstrBuilder MIB =
BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
.addOperand(Update->getOperand(0))
.addOperand(I->getOperand(0))
.addOperand(I->getOperand(1))
.addImm(Value);
(void)MIB;
DEBUG(dbgs() << "Creating post-indexed load/store.");
DEBUG(dbgs() << " Replacing instructions:\n ");
DEBUG(I->print(dbgs()));
DEBUG(dbgs() << " ");
DEBUG(Update->print(dbgs()));
DEBUG(dbgs() << " with instruction:\n ");
DEBUG(((MachineInstr *)MIB)->print(dbgs()));
DEBUG(dbgs() << "\n");
// Erase the old instructions for the block.
I->eraseFromParent();
Update->eraseFromParent();
return NextI;
}
static bool isMatchingUpdateInsn(MachineInstr *MI, unsigned BaseReg,
int Offset) {
switch (MI->getOpcode()) {
default:
break;
case AArch64::SUBXri:
// Negate the offset for a SUB instruction.
Offset *= -1;
// FALLTHROUGH
case AArch64::ADDXri:
// Make sure it's a vanilla immediate operand, not a relocation or
// anything else we can't handle.
if (!MI->getOperand(2).isImm())
break;
// Watch out for 1 << 12 shifted value.
if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm()))
break;
// If the instruction has the base register as source and dest and the
// immediate will fit in a signed 9-bit integer, then we have a match.
if (MI->getOperand(0).getReg() == BaseReg &&
MI->getOperand(1).getReg() == BaseReg &&
MI->getOperand(2).getImm() <= 255 &&
MI->getOperand(2).getImm() >= -256) {
// If we have a non-zero Offset, we check that it matches the amount
// we're adding to the register.
if (!Offset || Offset == MI->getOperand(2).getImm())
return true;
}
break;
}
return false;
}
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
MachineBasicBlock::iterator I, unsigned Limit, int Value) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineInstr *MemMI = I;
MachineBasicBlock::iterator MBBI = I;
const MachineFunction &MF = *MemMI->getParent()->getParent();
unsigned DestReg = MemMI->getOperand(0).getReg();
unsigned BaseReg = MemMI->getOperand(1).getReg();
int Offset = MemMI->getOperand(2).getImm() *
TII->getRegClass(MemMI->getDesc(), 0, TRI, MF)->getSize();
// If the base register overlaps the destination register, we can't
// merge the update.
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
return E;
// Scan forward looking for post-index opportunities.
// Updating instructions can't be formed if the memory insn already
// has an offset other than the value we're looking for.
if (Offset != Value)
return E;
// Track which registers have been modified and used between the first insn
// (inclusive) and the second insn.
BitVector ModifiedRegs, UsedRegs;
ModifiedRegs.resize(TRI->getNumRegs());
UsedRegs.resize(TRI->getNumRegs());
++MBBI;
for (unsigned Count = 0; MBBI != E; ++MBBI) {
MachineInstr *MI = MBBI;
// Skip DBG_VALUE instructions. Otherwise debug info can affect the
// optimization by changing how far we scan.
if (MI->isDebugValue())
continue;
// Now that we know this is a real instruction, count it.
++Count;
// If we found a match, return it.
if (isMatchingUpdateInsn(MI, BaseReg, Value))
return MBBI;
// Update the status of what the instruction clobbered and used.
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
// Otherwise, if the base register is used or modified, we have no match, so
// return early.
if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
return E;
}
return E;
}
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
MachineBasicBlock::iterator I, unsigned Limit) {
MachineBasicBlock::iterator B = I->getParent()->begin();
MachineBasicBlock::iterator E = I->getParent()->end();
MachineInstr *MemMI = I;
MachineBasicBlock::iterator MBBI = I;
const MachineFunction &MF = *MemMI->getParent()->getParent();
unsigned DestReg = MemMI->getOperand(0).getReg();
unsigned BaseReg = MemMI->getOperand(1).getReg();
int Offset = MemMI->getOperand(2).getImm();
unsigned RegSize = TII->getRegClass(MemMI->getDesc(), 0, TRI, MF)->getSize();
// If the load/store is the first instruction in the block, there's obviously
// not any matching update. Ditto if the memory offset isn't zero.
if (MBBI == B || Offset != 0)
return E;
// If the base register overlaps the destination register, we can't
// merge the update.
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
return E;
// Track which registers have been modified and used between the first insn
// (inclusive) and the second insn.
BitVector ModifiedRegs, UsedRegs;
ModifiedRegs.resize(TRI->getNumRegs());
UsedRegs.resize(TRI->getNumRegs());
--MBBI;
for (unsigned Count = 0; MBBI != B; --MBBI) {
MachineInstr *MI = MBBI;
// Skip DBG_VALUE instructions. Otherwise debug info can affect the
// optimization by changing how far we scan.
if (MI->isDebugValue())
continue;
// Now that we know this is a real instruction, count it.
++Count;
// If we found a match, return it.
if (isMatchingUpdateInsn(MI, BaseReg, RegSize))
return MBBI;
// Update the status of what the instruction clobbered and used.
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
// Otherwise, if the base register is used or modified, we have no match, so
// return early.
if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
return E;
}
return E;
}
bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB) {
bool Modified = false;
// Two tranformations to do here:
// 1) Find loads and stores that can be merged into a single load or store
// pair instruction.
// e.g.,
// ldr x0, [x2]
// ldr x1, [x2, #8]
// ; becomes
// ldp x0, x1, [x2]
// 2) Find base register updates that can be merged into the load or store
// as a base-reg writeback.
// e.g.,
// ldr x0, [x2]
// add x2, x2, #4
// ; becomes
// ldr x0, [x2], #4
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
MachineInstr *MI = MBBI;
switch (MI->getOpcode()) {
default:
// Just move on to the next instruction.
++MBBI;
break;
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
case AArch64::STRXui:
case AArch64::STRWui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
case AArch64::LDRXui:
case AArch64::LDRWui:
case AArch64::LDRSWui:
// do the unscaled versions as well
case AArch64::STURSi:
case AArch64::STURDi:
case AArch64::STURQi:
case AArch64::STURWi:
case AArch64::STURXi:
case AArch64::LDURSi:
case AArch64::LDURDi:
case AArch64::LDURQi:
case AArch64::LDURWi:
case AArch64::LDURXi:
case AArch64::LDURSWi: {
// If this is a volatile load/store, don't mess with it.
if (MI->hasOrderedMemoryRef()) {
++MBBI;
break;
}
// Make sure this is a reg+imm (as opposed to an address reloc).
if (!MI->getOperand(2).isImm()) {
++MBBI;
break;
}
// Check if this load/store has a hint to avoid pair formation.
// MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
if (TII->isLdStPairSuppressed(MI)) {
++MBBI;
break;
}
// Look ahead up to ScanLimit instructions for a pairable instruction.
bool MergeForward = false;
MachineBasicBlock::iterator Paired =
findMatchingInsn(MBBI, MergeForward, ScanLimit);
if (Paired != E) {
// Merge the loads into a pair. Keeping the iterator straight is a
// pain, so we let the merge routine tell us what the next instruction
// is after it's done mucking about.
MBBI = mergePairedInsns(MBBI, Paired, MergeForward);
Modified = true;
++NumPairCreated;
if (isUnscaledLdst(MI->getOpcode()))
++NumUnscaledPairCreated;
break;
}
++MBBI;
break;
}
// FIXME: Do the other instructions.
}
}
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
MachineInstr *MI = MBBI;
// Do update merging. It's simpler to keep this separate from the above
// switch, though not strictly necessary.
int Opc = MI->getOpcode();
switch (Opc) {
default:
// Just move on to the next instruction.
++MBBI;
break;
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
case AArch64::STRXui:
case AArch64::STRWui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
case AArch64::LDRXui:
case AArch64::LDRWui:
// do the unscaled versions as well
case AArch64::STURSi:
case AArch64::STURDi:
case AArch64::STURQi:
case AArch64::STURWi:
case AArch64::STURXi:
case AArch64::LDURSi:
case AArch64::LDURDi:
case AArch64::LDURQi:
case AArch64::LDURWi:
case AArch64::LDURXi: {
// Make sure this is a reg+imm (as opposed to an address reloc).
if (!MI->getOperand(2).isImm()) {
++MBBI;
break;
}
// Look ahead up to ScanLimit instructions for a mergable instruction.
MachineBasicBlock::iterator Update =
findMatchingUpdateInsnForward(MBBI, ScanLimit, 0);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergePostIdxUpdateInsn(MBBI, Update);
Modified = true;
++NumPostFolded;
break;
}
// Don't know how to handle pre/post-index versions, so move to the next
// instruction.
if (isUnscaledLdst(Opc)) {
++MBBI;
break;
}
// Look back to try to find a pre-index instruction. For example,
// add x0, x0, #8
// ldr x1, [x0]
// merged into:
// ldr x1, [x0, #8]!
Update = findMatchingUpdateInsnBackward(MBBI, ScanLimit);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergePreIdxUpdateInsn(MBBI, Update);
Modified = true;
++NumPreFolded;
break;
}
// Look forward to try to find a post-index instruction. For example,
// ldr x1, [x0, #64]
// add x0, x0, #64
// merged into:
// ldr x1, [x0, #64]!
// The immediate in the load/store is scaled by the size of the register
// being loaded. The immediate in the add we're looking for,
// however, is not, so adjust here.
int Value = MI->getOperand(2).getImm() *
TII->getRegClass(MI->getDesc(), 0, TRI, *(MBB.getParent()))
->getSize();
Update = findMatchingUpdateInsnForward(MBBI, ScanLimit, Value);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergePreIdxUpdateInsn(MBBI, Update);
Modified = true;
++NumPreFolded;
break;
}
// Nothing found. Just move to the next instruction.
++MBBI;
break;
}
// FIXME: Do the other instructions.
}
}
return Modified;
}
bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
TII = static_cast<const AArch64InstrInfo *>(Fn.getSubtarget().getInstrInfo());
TRI = Fn.getSubtarget().getRegisterInfo();
bool Modified = false;
for (auto &MBB : Fn)
Modified |= optimizeBlock(MBB);
return Modified;
}
// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep
// loads and stores near one another?
/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
/// optimization pass.
FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
return new AArch64LoadStoreOpt();
}