llvm-6502/include/Support/CommandLine.h

1035 lines
34 KiB
C
Raw Normal View History

//===- Support/CommandLine.h - Flexible Command line parser -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements a command line argument processor that is useful when
// creating a tool. It provides a simple, minimalistic interface that is easily
// extensible and supports nonlocal (library) command line options.
//
// Note that rather than trying to figure out what this code does, you should
// read the library documentation located in docs/CommandLine.html or looks at
// the many example usages in tools/*/*.cpp
//
//===----------------------------------------------------------------------===//
#ifndef SUPPORT_COMMANDLINE_H
#define SUPPORT_COMMANDLINE_H
#include "Support/type_traits.h"
#include <string>
#include <vector>
#include <utility>
#include <cstdarg>
#include <cassert>
namespace llvm {
/// cl Namespace - This namespace contains all of the command line option
/// processing machinery. It is intentionally a short name to make qualified
/// usage concise.
namespace cl {
//===----------------------------------------------------------------------===//
// ParseCommandLineOptions - Command line option processing entry point.
//
void ParseCommandLineOptions(int &argc, char **argv,
const char *Overview = 0);
//===----------------------------------------------------------------------===//
// ParseEnvironmentOptions - Environment variable option processing alternate
// entry point.
//
void ParseEnvironmentOptions(const char *progName, const char *envvar,
const char *Overview = 0);
//===----------------------------------------------------------------------===//
// Flags permitted to be passed to command line arguments
//
enum NumOccurrences { // Flags for the number of occurrences allowed
Optional = 0x01, // Zero or One occurrence
ZeroOrMore = 0x02, // Zero or more occurrences allowed
Required = 0x03, // One occurrence required
OneOrMore = 0x04, // One or more occurrences required
// ConsumeAfter - Indicates that this option is fed anything that follows the
// last positional argument required by the application (it is an error if
// there are zero positional arguments, and a ConsumeAfter option is used).
// Thus, for example, all arguments to LLI are processed until a filename is
// found. Once a filename is found, all of the succeeding arguments are
// passed, unprocessed, to the ConsumeAfter option.
//
ConsumeAfter = 0x05,
OccurrencesMask = 0x07,
};
enum ValueExpected { // Is a value required for the option?
ValueOptional = 0x08, // The value can appear... or not
ValueRequired = 0x10, // The value is required to appear!
ValueDisallowed = 0x18, // A value may not be specified (for flags)
ValueMask = 0x18,
};
enum OptionHidden { // Control whether -help shows this option
NotHidden = 0x20, // Option included in --help & --help-hidden
Hidden = 0x40, // -help doesn't, but --help-hidden does
ReallyHidden = 0x60, // Neither --help nor --help-hidden show this arg
HiddenMask = 0x60,
};
// Formatting flags - This controls special features that the option might have
// that cause it to be parsed differently...
//
// Prefix - This option allows arguments that are otherwise unrecognized to be
// matched by options that are a prefix of the actual value. This is useful for
// cases like a linker, where options are typically of the form '-lfoo' or
// '-L../../include' where -l or -L are the actual flags. When prefix is
// enabled, and used, the value for the flag comes from the suffix of the
// argument.
//
// Grouping - With this option enabled, multiple letter options are allowed to
// bunch together with only a single hyphen for the whole group. This allows
// emulation of the behavior that ls uses for example: ls -la === ls -l -a
//
enum FormattingFlags {
NormalFormatting = 0x000, // Nothing special
Positional = 0x080, // Is a positional argument, no '-' required
Prefix = 0x100, // Can this option directly prefix its value?
Grouping = 0x180, // Can this option group with other options?
FormattingMask = 0x180,
};
enum MiscFlags { // Miscellaneous flags to adjust argument
CommaSeparated = 0x200, // Should this cl::list split between commas?
MiscMask = 0x200,
};
//===----------------------------------------------------------------------===//
// Option Base class
//
class alias;
class Option {
friend void cl::ParseCommandLineOptions(int &, char **, const char *, int);
friend class alias;
// handleOccurrences - Overriden by subclasses to handle the value passed into
// an argument. Should return true if there was an error processing the
// argument and the program should exit.
//
virtual bool handleOccurrence(const char *ArgName, const std::string &Arg) = 0;
virtual enum NumOccurrences getNumOccurrencesFlagDefault() const {
return Optional;
}
virtual enum ValueExpected getValueExpectedFlagDefault() const {
return ValueOptional;
}
virtual enum OptionHidden getOptionHiddenFlagDefault() const {
return NotHidden;
}
virtual enum FormattingFlags getFormattingFlagDefault() const {
return NormalFormatting;
}
int NumOccurrences; // The number of times specified
int Flags; // Flags for the argument
public:
const char *ArgStr; // The argument string itself (ex: "help", "o")
const char *HelpStr; // The descriptive text message for --help
const char *ValueStr; // String describing what the value of this option is
inline enum NumOccurrences getNumOccurrencesFlag() const {
int NO = Flags & OccurrencesMask;
return NO ? static_cast<enum NumOccurrences>(NO)
: getNumOccurrencesFlagDefault();
}
inline enum ValueExpected getValueExpectedFlag() const {
int VE = Flags & ValueMask;
return VE ? static_cast<enum ValueExpected>(VE)
: getValueExpectedFlagDefault();
}
inline enum OptionHidden getOptionHiddenFlag() const {
int OH = Flags & HiddenMask;
return OH ? static_cast<enum OptionHidden>(OH)
: getOptionHiddenFlagDefault();
}
inline enum FormattingFlags getFormattingFlag() const {
int OH = Flags & FormattingMask;
return OH ? static_cast<enum FormattingFlags>(OH)
: getFormattingFlagDefault();
}
inline unsigned getMiscFlags() const {
return Flags & MiscMask;
}
// hasArgStr - Return true if the argstr != ""
bool hasArgStr() const { return ArgStr[0] != 0; }
//-------------------------------------------------------------------------===
// Accessor functions set by OptionModifiers
//
void setArgStr(const char *S) { ArgStr = S; }
void setDescription(const char *S) { HelpStr = S; }
void setValueStr(const char *S) { ValueStr = S; }
void setFlag(unsigned Flag, unsigned FlagMask) {
if (Flags & FlagMask) {
error(": Specified two settings for the same option!");
exit(1);
}
Flags |= Flag;
}
void setNumOccurrencesFlag(enum NumOccurrences Val) {
setFlag(Val, OccurrencesMask);
}
void setValueExpectedFlag(enum ValueExpected Val) { setFlag(Val, ValueMask); }
void setHiddenFlag(enum OptionHidden Val) { setFlag(Val, HiddenMask); }
void setFormattingFlag(enum FormattingFlags V) { setFlag(V, FormattingMask); }
void setMiscFlag(enum MiscFlags M) { setFlag(M, M); }
protected:
Option() : NumOccurrences(0), Flags(0),
ArgStr(""), HelpStr(""), ValueStr("") {}
public:
// addArgument - Tell the system that this Option subclass will handle all
// occurrences of -ArgStr on the command line.
//
void addArgument(const char *ArgStr);
void removeArgument(const char *ArgStr);
// Return the width of the option tag for printing...
virtual unsigned getOptionWidth() const = 0;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
virtual void printOptionInfo(unsigned GlobalWidth) const = 0;
// addOccurrence - Wrapper around handleOccurrence that enforces Flags
//
bool addOccurrence(const char *ArgName, const std::string &Value);
// Prints option name followed by message. Always returns true.
bool error(std::string Message, const char *ArgName = 0);
public:
inline int getNumOccurrences() const { return NumOccurrences; }
virtual ~Option() {}
};
//===----------------------------------------------------------------------===//
// Command line option modifiers that can be used to modify the behavior of
// command line option parsers...
//
// desc - Modifier to set the description shown in the --help output...
struct desc {
const char *Desc;
desc(const char *Str) : Desc(Str) {}
void apply(Option &O) const { O.setDescription(Desc); }
};
// value_desc - Modifier to set the value description shown in the --help
// output...
struct value_desc {
const char *Desc;
value_desc(const char *Str) : Desc(Str) {}
void apply(Option &O) const { O.setValueStr(Desc); }
};
// init - Specify a default (initial) value for the command line argument, if
// the default constructor for the argument type does not give you what you
// want. This is only valid on "opt" arguments, not on "list" arguments.
//
template<class Ty>
struct initializer {
const Ty &Init;
initializer(const Ty &Val) : Init(Val) {}
template<class Opt>
void apply(Opt &O) const { O.setInitialValue(Init); }
};
template<class Ty>
initializer<Ty> init(const Ty &Val) {
return initializer<Ty>(Val);
}
// location - Allow the user to specify which external variable they want to
// store the results of the command line argument processing into, if they don't
// want to store it in the option itself.
//
template<class Ty>
struct LocationClass {
Ty &Loc;
LocationClass(Ty &L) : Loc(L) {}
template<class Opt>
void apply(Opt &O) const { O.setLocation(O, Loc); }
};
template<class Ty>
LocationClass<Ty> location(Ty &L) { return LocationClass<Ty>(L); }
//===----------------------------------------------------------------------===//
// Enum valued command line option
//
#define clEnumVal(ENUMVAL, DESC) #ENUMVAL, (int)ENUMVAL, DESC
#define clEnumValN(ENUMVAL, FLAGNAME, DESC) FLAGNAME, (int)ENUMVAL, DESC
// values - For custom data types, allow specifying a group of values together
// as the values that go into the mapping that the option handler uses. Note
// that the values list must always have a 0 at the end of the list to indicate
// that the list has ended.
//
template<class DataType>
class ValuesClass {
// Use a vector instead of a map, because the lists should be short,
// the overhead is less, and most importantly, it keeps them in the order
// inserted so we can print our option out nicely.
std::vector<std::pair<const char *, std::pair<int, const char *> > > Values;
void processValues(va_list Vals);
public:
ValuesClass(const char *EnumName, DataType Val, const char *Desc,
va_list ValueArgs) {
// Insert the first value, which is required.
Values.push_back(std::make_pair(EnumName, std::make_pair(Val, Desc)));
// Process the varargs portion of the values...
while (const char *EnumName = va_arg(ValueArgs, const char *)) {
DataType EnumVal = static_cast<DataType>(va_arg(ValueArgs, int));
const char *EnumDesc = va_arg(ValueArgs, const char *);
Values.push_back(std::make_pair(EnumName, // Add value to value map
std::make_pair(EnumVal, EnumDesc)));
}
}
template<class Opt>
void apply(Opt &O) const {
for (unsigned i = 0, e = Values.size(); i != e; ++i)
O.getParser().addLiteralOption(Values[i].first, Values[i].second.first,
Values[i].second.second);
}
};
template<class DataType>
ValuesClass<DataType> values(const char *Arg, DataType Val, const char *Desc,
...) {
va_list ValueArgs;
va_start(ValueArgs, Desc);
ValuesClass<DataType> Vals(Arg, Val, Desc, ValueArgs);
va_end(ValueArgs);
return Vals;
}
//===----------------------------------------------------------------------===//
// parser class - Parameterizable parser for different data types. By default,
// known data types (string, int, bool) have specialized parsers, that do what
// you would expect. The default parser, used for data types that are not
// built-in, uses a mapping table to map specific options to values, which is
// used, among other things, to handle enum types.
//--------------------------------------------------
// generic_parser_base - This class holds all the non-generic code that we do
// not need replicated for every instance of the generic parser. This also
// allows us to put stuff into CommandLine.cpp
//
struct generic_parser_base {
virtual ~generic_parser_base() {} // Base class should have virtual-dtor
// getNumOptions - Virtual function implemented by generic subclass to
// indicate how many entries are in Values.
//
virtual unsigned getNumOptions() const = 0;
// getOption - Return option name N.
virtual const char *getOption(unsigned N) const = 0;
// getDescription - Return description N
virtual const char *getDescription(unsigned N) const = 0;
// Return the width of the option tag for printing...
virtual unsigned getOptionWidth(const Option &O) const;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const;
void initialize(Option &O) {
// All of the modifiers for the option have been processed by now, so the
// argstr field should be stable, copy it down now.
//
hasArgStr = O.hasArgStr();
// If there has been no argstr specified, that means that we need to add an
// argument for every possible option. This ensures that our options are
// vectored to us.
//
if (!hasArgStr)
for (unsigned i = 0, e = getNumOptions(); i != e; ++i)
O.addArgument(getOption(i));
}
enum ValueExpected getValueExpectedFlagDefault() const {
// If there is an ArgStr specified, then we are of the form:
//
// -opt=O2 or -opt O2 or -optO2
//
// In which case, the value is required. Otherwise if an arg str has not
// been specified, we are of the form:
//
// -O2 or O2 or -la (where -l and -a are separate options)
//
// If this is the case, we cannot allow a value.
//
if (hasArgStr)
return ValueRequired;
else
return ValueDisallowed;
}
// findOption - Return the option number corresponding to the specified
// argument string. If the option is not found, getNumOptions() is returned.
//
unsigned findOption(const char *Name);
protected:
bool hasArgStr;
};
// Default parser implementation - This implementation depends on having a
// mapping of recognized options to values of some sort. In addition to this,
// each entry in the mapping also tracks a help message that is printed with the
// command line option for --help. Because this is a simple mapping parser, the
// data type can be any unsupported type.
//
template <class DataType>
class parser : public generic_parser_base {
protected:
std::vector<std::pair<const char *,
std::pair<DataType, const char *> > > Values;
public:
typedef DataType parser_data_type;
// Implement virtual functions needed by generic_parser_base
unsigned getNumOptions() const { return Values.size(); }
const char *getOption(unsigned N) const { return Values[N].first; }
const char *getDescription(unsigned N) const {
return Values[N].second.second;
}
// parse - Return true on error.
bool parse(Option &O, const char *ArgName, const std::string &Arg,
DataType &V) {
std::string ArgVal;
if (hasArgStr)
ArgVal = Arg;
else
ArgVal = ArgName;
for (unsigned i = 0, e = Values.size(); i != e; ++i)
if (ArgVal == Values[i].first) {
V = Values[i].second.first;
return false;
}
return O.error(": Cannot find option named '" + ArgVal + "'!");
}
// addLiteralOption - Add an entry to the mapping table...
template <class DT>
void addLiteralOption(const char *Name, const DT &V, const char *HelpStr) {
assert(findOption(Name) == Values.size() && "Option already exists!");
Values.push_back(std::make_pair(Name,
std::make_pair(static_cast<DataType>(V),HelpStr)));
}
// removeLiteralOption - Remove the specified option.
//
void removeLiteralOption(const char *Name) {
unsigned N = findOption(Name);
assert(N != Values.size() && "Option not found!");
Values.erase(Values.begin()+N);
}
};
//--------------------------------------------------
// basic_parser - Super class of parsers to provide boilerplate code
//
struct basic_parser_impl { // non-template implementation of basic_parser<t>
virtual ~basic_parser_impl() {}
enum ValueExpected getValueExpectedFlagDefault() const {
return ValueRequired;
}
void initialize(Option &O) {}
// Return the width of the option tag for printing...
unsigned getOptionWidth(const Option &O) const;
// printOptionInfo - Print out information about this option. The
// to-be-maintained width is specified.
//
void printOptionInfo(const Option &O, unsigned GlobalWidth) const;
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "value"; }
};
// basic_parser - The real basic parser is just a template wrapper that provides
// a typedef for the provided data type.
//
template<class DataType>
struct basic_parser : public basic_parser_impl {
typedef DataType parser_data_type;
};
//--------------------------------------------------
// parser<bool>
//
template<>
struct parser<bool> : public basic_parser<bool> {
// parse - Return true on error.
bool parse(Option &O, const char *ArgName, const std::string &Arg, bool &Val);
enum ValueExpected getValueExpectedFlagDefault() const {
return ValueOptional;
}
// getValueName - Do not print =<value> at all
virtual const char *getValueName() const { return 0; }
};
//--------------------------------------------------
// parser<int>
//
template<>
struct parser<int> : public basic_parser<int> {
// parse - Return true on error.
bool parse(Option &O, const char *ArgName, const std::string &Arg, int &Val);
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "int"; }
};
//--------------------------------------------------
// parser<unsigned>
//
template<>
struct parser<unsigned> : public basic_parser<unsigned> {
// parse - Return true on error.
bool parse(Option &O, const char *ArgName, const std::string &Arg,
unsigned &Val);
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "uint"; }
};
//--------------------------------------------------
// parser<double>
//
template<>
struct parser<double> : public basic_parser<double> {
// parse - Return true on error.
bool parse(Option &O, const char *AN, const std::string &Arg, double &Val);
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "number"; }
};
//--------------------------------------------------
// parser<float>
//
template<>
struct parser<float> : public basic_parser<float> {
// parse - Return true on error.
bool parse(Option &O, const char *AN, const std::string &Arg, float &Val);
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "number"; }
};
//--------------------------------------------------
// parser<std::string>
//
template<>
struct parser<std::string> : public basic_parser<std::string> {
// parse - Return true on error.
bool parse(Option &O, const char *ArgName, const std::string &Arg,
std::string &Value) {
Value = Arg;
return false;
}
// getValueName - Overload in subclass to provide a better default value.
virtual const char *getValueName() const { return "string"; }
};
//===----------------------------------------------------------------------===//
// applicator class - This class is used because we must use partial
// specialization to handle literal string arguments specially (const char* does
// not correctly respond to the apply method). Because the syntax to use this
// is a pain, we have the 'apply' method below to handle the nastiness...
//
template<class Mod> struct applicator {
template<class Opt>
static void opt(const Mod &M, Opt &O) { M.apply(O); }
};
// Handle const char* as a special case...
template<unsigned n> struct applicator<char[n]> {
template<class Opt>
static void opt(const char *Str, Opt &O) { O.setArgStr(Str); }
};
template<unsigned n> struct applicator<const char[n]> {
template<class Opt>
static void opt(const char *Str, Opt &O) { O.setArgStr(Str); }
};
template<> struct applicator<const char*> {
template<class Opt>
static void opt(const char *Str, Opt &O) { O.setArgStr(Str); }
};
template<> struct applicator<NumOccurrences> {
static void opt(NumOccurrences NO, Option &O) { O.setNumOccurrencesFlag(NO); }
};
template<> struct applicator<ValueExpected> {
static void opt(ValueExpected VE, Option &O) { O.setValueExpectedFlag(VE); }
};
template<> struct applicator<OptionHidden> {
static void opt(OptionHidden OH, Option &O) { O.setHiddenFlag(OH); }
};
template<> struct applicator<FormattingFlags> {
static void opt(FormattingFlags FF, Option &O) { O.setFormattingFlag(FF); }
};
template<> struct applicator<MiscFlags> {
static void opt(MiscFlags MF, Option &O) { O.setMiscFlag(MF); }
};
// apply method - Apply a modifier to an option in a type safe way.
template<class Mod, class Opt>
void apply(const Mod &M, Opt *O) {
applicator<Mod>::opt(M, *O);
}
//===----------------------------------------------------------------------===//
// opt_storage class
// Default storage class definition: external storage. This implementation
// assumes the user will specify a variable to store the data into with the
// cl::location(x) modifier.
//
template<class DataType, bool ExternalStorage, bool isClass>
class opt_storage {
DataType *Location; // Where to store the object...
void check() {
assert(Location != 0 && "cl::location(...) not specified for a command "
"line option with external storage, "
"or cl::init specified before cl::location()!!");
}
public:
opt_storage() : Location(0) {}
bool setLocation(Option &O, DataType &L) {
if (Location)
return O.error(": cl::location(x) specified more than once!");
Location = &L;
return false;
}
template<class T>
void setValue(const T &V) {
check();
*Location = V;
}
DataType &getValue() { check(); return *Location; }
const DataType &getValue() const { check(); return *Location; }
};
// Define how to hold a class type object, such as a string. Since we can
// inherit from a class, we do so. This makes us exactly compatible with the
// object in all cases that it is used.
//
template<class DataType>
struct opt_storage<DataType,false,true> : public DataType {
template<class T>
void setValue(const T &V) { DataType::operator=(V); }
DataType &getValue() { return *this; }
const DataType &getValue() const { return *this; }
};
// Define a partial specialization to handle things we cannot inherit from. In
// this case, we store an instance through containment, and overload operators
// to get at the value.
//
template<class DataType>
struct opt_storage<DataType, false, false> {
DataType Value;
// Make sure we initialize the value with the default constructor for the
// type.
opt_storage() : Value(DataType()) {}
template<class T>
void setValue(const T &V) { Value = V; }
DataType &getValue() { return Value; }
DataType getValue() const { return Value; }
};
//===----------------------------------------------------------------------===//
// opt - A scalar command line option.
//
template <class DataType, bool ExternalStorage = false,
class ParserClass = parser<DataType> >
class opt : public Option,
public opt_storage<DataType, ExternalStorage,
is_class<DataType>::value> {
ParserClass Parser;
virtual bool handleOccurrence(const char *ArgName, const std::string &Arg) {
typename ParserClass::parser_data_type Val;
if (Parser.parse(*this, ArgName, Arg, Val))
return true; // Parse error!
setValue(Val);
return false;
}
virtual enum ValueExpected getValueExpectedFlagDefault() const {
return Parser.getValueExpectedFlagDefault();
}
// Forward printing stuff to the parser...
virtual unsigned getOptionWidth() const {return Parser.getOptionWidth(*this);}
virtual void printOptionInfo(unsigned GlobalWidth) const {
Parser.printOptionInfo(*this, GlobalWidth);
}
void done() {
addArgument(ArgStr);
Parser.initialize(*this);
}
public:
// setInitialValue - Used by the cl::init modifier...
void setInitialValue(const DataType &V) { this->setValue(V); }
ParserClass &getParser() { return Parser; }
operator DataType() const { return this->getValue(); }
template<class T>
DataType &operator=(const T &Val) {
this->setValue(Val);
return this->getValue();
}
// One option...
template<class M0t>
opt(const M0t &M0) {
apply(M0, this);
done();
}
// Two options...
template<class M0t, class M1t>
opt(const M0t &M0, const M1t &M1) {
apply(M0, this); apply(M1, this);
done();
}
// Three options...
template<class M0t, class M1t, class M2t>
opt(const M0t &M0, const M1t &M1, const M2t &M2) {
apply(M0, this); apply(M1, this); apply(M2, this);
done();
}
// Four options...
template<class M0t, class M1t, class M2t, class M3t>
opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
done();
}
// Five options...
template<class M0t, class M1t, class M2t, class M3t, class M4t>
opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this);
done();
}
// Six options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t>
opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this);
done();
}
// Seven options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t, class M6t>
opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5, const M6t &M6) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this); apply(M6, this);
done();
}
// Eight options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t, class M6t, class M7t>
opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5, const M6t &M6, const M7t &M7) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this); apply(M6, this); apply(M7, this);
done();
}
};
//===----------------------------------------------------------------------===//
// list_storage class
// Default storage class definition: external storage. This implementation
// assumes the user will specify a variable to store the data into with the
// cl::location(x) modifier.
//
template<class DataType, class StorageClass>
class list_storage {
StorageClass *Location; // Where to store the object...
public:
list_storage() : Location(0) {}
bool setLocation(Option &O, StorageClass &L) {
if (Location)
return O.error(": cl::location(x) specified more than once!");
Location = &L;
return false;
}
template<class T>
void addValue(const T &V) {
assert(Location != 0 && "cl::location(...) not specified for a command "
"line option with external storage!");
Location->push_back(V);
}
};
// Define how to hold a class type object, such as a string. Since we can
// inherit from a class, we do so. This makes us exactly compatible with the
// object in all cases that it is used.
//
template<class DataType>
struct list_storage<DataType, bool> : public std::vector<DataType> {
template<class T>
void addValue(const T &V) { push_back(V); }
};
//===----------------------------------------------------------------------===//
// list - A list of command line options.
//
template <class DataType, class Storage = bool,
class ParserClass = parser<DataType> >
class list : public Option, public list_storage<DataType, Storage> {
ParserClass Parser;
virtual enum NumOccurrences getNumOccurrencesFlagDefault() const {
return ZeroOrMore;
}
virtual enum ValueExpected getValueExpectedFlagDefault() const {
return Parser.getValueExpectedFlagDefault();
}
virtual bool handleOccurrence(const char *ArgName, const std::string &Arg) {
typename ParserClass::parser_data_type Val;
if (Parser.parse(*this, ArgName, Arg, Val))
return true; // Parse Error!
addValue(Val);
return false;
}
// Forward printing stuff to the parser...
virtual unsigned getOptionWidth() const {return Parser.getOptionWidth(*this);}
virtual void printOptionInfo(unsigned GlobalWidth) const {
Parser.printOptionInfo(*this, GlobalWidth);
}
void done() {
addArgument(ArgStr);
Parser.initialize(*this);
}
public:
ParserClass &getParser() { return Parser; }
// One option...
template<class M0t>
list(const M0t &M0) {
apply(M0, this);
done();
}
// Two options...
template<class M0t, class M1t>
list(const M0t &M0, const M1t &M1) {
apply(M0, this); apply(M1, this);
done();
}
// Three options...
template<class M0t, class M1t, class M2t>
list(const M0t &M0, const M1t &M1, const M2t &M2) {
apply(M0, this); apply(M1, this); apply(M2, this);
done();
}
// Four options...
template<class M0t, class M1t, class M2t, class M3t>
list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
done();
}
// Five options...
template<class M0t, class M1t, class M2t, class M3t, class M4t>
list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this);
done();
}
// Six options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t>
list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this);
done();
}
// Seven options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t, class M6t>
list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5, const M6t &M6) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this); apply(M6, this);
done();
}
// Eight options...
template<class M0t, class M1t, class M2t, class M3t,
class M4t, class M5t, class M6t, class M7t>
list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3,
const M4t &M4, const M5t &M5, const M6t &M6, const M7t &M7) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
apply(M4, this); apply(M5, this); apply(M6, this); apply(M7, this);
done();
}
};
//===----------------------------------------------------------------------===//
// Aliased command line option (alias this name to a preexisting name)
//
class alias : public Option {
Option *AliasFor;
virtual bool handleOccurrence(const char *ArgName, const std::string &Arg) {
return AliasFor->handleOccurrence(AliasFor->ArgStr, Arg);
}
// Aliases default to be hidden...
virtual enum OptionHidden getOptionHiddenFlagDefault() const {return Hidden;}
// Handle printing stuff...
virtual unsigned getOptionWidth() const;
virtual void printOptionInfo(unsigned GlobalWidth) const;
void done() {
if (!hasArgStr())
error(": cl::alias must have argument name specified!");
if (AliasFor == 0)
error(": cl::alias must have an cl::aliasopt(option) specified!");
addArgument(ArgStr);
}
public:
void setAliasFor(Option &O) {
if (AliasFor)
error(": cl::alias must only have one cl::aliasopt(...) specified!");
AliasFor = &O;
}
// One option...
template<class M0t>
alias(const M0t &M0) : AliasFor(0) {
apply(M0, this);
done();
}
// Two options...
template<class M0t, class M1t>
alias(const M0t &M0, const M1t &M1) : AliasFor(0) {
apply(M0, this); apply(M1, this);
done();
}
// Three options...
template<class M0t, class M1t, class M2t>
alias(const M0t &M0, const M1t &M1, const M2t &M2) : AliasFor(0) {
apply(M0, this); apply(M1, this); apply(M2, this);
done();
}
// Four options...
template<class M0t, class M1t, class M2t, class M3t>
alias(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3)
: AliasFor(0) {
apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this);
done();
}
};
// aliasfor - Modifier to set the option an alias aliases.
struct aliasopt {
Option &Opt;
aliasopt(Option &O) : Opt(O) {}
void apply(alias &A) const { A.setAliasFor(Opt); }
};
} // End namespace cl
} // End namespace llvm
#endif