2007-03-31 04:06:36 +00:00
|
|
|
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This pass munges the code in the input function to better prepare it for
|
|
|
|
// SelectionDAG-based code generation. This works around limitations in it's
|
|
|
|
// basic-block-at-a-time approach. It should eventually be removed.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "codegenprepare"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/Function.h"
|
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/Pass.h"
|
|
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
2007-04-02 01:35:34 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/Compiler.h"
|
2007-03-31 04:06:36 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
|
|
|
|
/// TLI - Keep a pointer of a TargetLowering to consult for determining
|
|
|
|
/// transformation profitability.
|
|
|
|
const TargetLowering *TLI;
|
|
|
|
public:
|
|
|
|
CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
|
|
|
|
private:
|
2007-04-02 01:35:34 +00:00
|
|
|
bool EliminateMostlyEmptyBlocks(Function &F);
|
|
|
|
bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
|
|
|
|
void EliminateMostlyEmptyBlock(BasicBlock *BB);
|
2007-03-31 04:06:36 +00:00
|
|
|
bool OptimizeBlock(BasicBlock &BB);
|
|
|
|
bool OptimizeGEPExpression(GetElementPtrInst *GEPI);
|
|
|
|
};
|
|
|
|
}
|
|
|
|
static RegisterPass<CodeGenPrepare> X("codegenprepare",
|
|
|
|
"Optimize for code generation");
|
|
|
|
|
|
|
|
FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
|
|
|
|
return new CodeGenPrepare(TLI);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CodeGenPrepare::runOnFunction(Function &F) {
|
|
|
|
bool EverMadeChange = false;
|
2007-04-02 01:35:34 +00:00
|
|
|
|
|
|
|
// First pass, eliminate blocks that contain only PHI nodes and an
|
|
|
|
// unconditional branch.
|
|
|
|
EverMadeChange |= EliminateMostlyEmptyBlocks(F);
|
|
|
|
|
|
|
|
bool MadeChange = true;
|
2007-03-31 04:06:36 +00:00
|
|
|
while (MadeChange) {
|
|
|
|
MadeChange = false;
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
|
|
MadeChange |= OptimizeBlock(*BB);
|
|
|
|
EverMadeChange |= MadeChange;
|
|
|
|
}
|
|
|
|
return EverMadeChange;
|
|
|
|
}
|
|
|
|
|
2007-04-02 01:35:34 +00:00
|
|
|
/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
|
|
|
|
/// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify)
|
|
|
|
/// often split edges in ways that are non-optimal for isel. Start by
|
|
|
|
/// eliminating these blocks so we can split them the way we want them.
|
|
|
|
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Note that this intentionally skips the entry block.
|
|
|
|
for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
|
|
|
|
BasicBlock *BB = I++;
|
|
|
|
|
|
|
|
// If this block doesn't end with an uncond branch, ignore it.
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
|
|
if (!BI || !BI->isUnconditional())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If the instruction before the branch isn't a phi node, then other stuff
|
|
|
|
// is happening here.
|
|
|
|
BasicBlock::iterator BBI = BI;
|
|
|
|
if (BBI != BB->begin()) {
|
|
|
|
--BBI;
|
|
|
|
if (!isa<PHINode>(BBI)) continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do not break infinite loops.
|
|
|
|
BasicBlock *DestBB = BI->getSuccessor(0);
|
|
|
|
if (DestBB == BB)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!CanMergeBlocks(BB, DestBB))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
EliminateMostlyEmptyBlock(BB);
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
|
|
|
|
/// single uncond branch between them, and BB contains no other non-phi
|
|
|
|
/// instructions.
|
|
|
|
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
|
|
|
|
const BasicBlock *DestBB) const {
|
|
|
|
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
|
|
|
|
// the successor. If there are more complex condition (e.g. preheaders),
|
|
|
|
// don't mess around with them.
|
|
|
|
BasicBlock::const_iterator BBI = BB->begin();
|
|
|
|
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
|
|
|
|
for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
|
|
|
|
UI != E; ++UI) {
|
|
|
|
const Instruction *User = cast<Instruction>(*UI);
|
|
|
|
if (User->getParent() != DestBB || !isa<PHINode>(User))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
|
|
|
|
// and DestBB may have conflicting incoming values for the block. If so, we
|
|
|
|
// can't merge the block.
|
|
|
|
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
|
|
|
|
if (!DestBBPN) return true; // no conflict.
|
|
|
|
|
|
|
|
// Collect the preds of BB.
|
|
|
|
SmallPtrSet<BasicBlock*, 16> BBPreds;
|
|
|
|
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
// It is faster to get preds from a PHI than with pred_iterator.
|
|
|
|
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
|
|
|
|
BBPreds.insert(BBPN->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
BBPreds.insert(pred_begin(BB), pred_end(BB));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Walk the preds of DestBB.
|
|
|
|
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
|
|
|
|
if (BBPreds.count(Pred)) { // Common predecessor?
|
|
|
|
BBI = DestBB->begin();
|
|
|
|
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
|
|
|
|
const Value *V1 = PN->getIncomingValueForBlock(Pred);
|
|
|
|
const Value *V2 = PN->getIncomingValueForBlock(BB);
|
|
|
|
|
|
|
|
// If V2 is a phi node in BB, look up what the mapped value will be.
|
|
|
|
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
|
|
|
|
if (V2PN->getParent() == BB)
|
|
|
|
V2 = V2PN->getIncomingValueForBlock(Pred);
|
|
|
|
|
|
|
|
// If there is a conflict, bail out.
|
|
|
|
if (V1 != V2) return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
|
|
|
|
/// an unconditional branch in it.
|
|
|
|
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
|
|
|
|
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
|
|
|
|
BasicBlock *DestBB = BI->getSuccessor(0);
|
|
|
|
|
|
|
|
DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
|
|
|
|
|
|
|
|
// If the destination block has a single pred, then this is a trivial edge,
|
|
|
|
// just collapse it.
|
|
|
|
if (DestBB->getSinglePredecessor()) {
|
|
|
|
// If DestBB has single-entry PHI nodes, fold them.
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
|
|
PN->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Splice all the PHI nodes from BB over to DestBB.
|
|
|
|
DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
|
|
|
|
BB->begin(), BI);
|
|
|
|
|
|
|
|
// Anything that branched to BB now branches to DestBB.
|
|
|
|
BB->replaceAllUsesWith(DestBB);
|
|
|
|
|
|
|
|
// Nuke BB.
|
|
|
|
BB->eraseFromParent();
|
|
|
|
|
|
|
|
DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
|
|
|
|
// to handle the new incoming edges it is about to have.
|
|
|
|
PHINode *PN;
|
|
|
|
for (BasicBlock::iterator BBI = DestBB->begin();
|
|
|
|
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
|
|
|
|
// Remove the incoming value for BB, and remember it.
|
|
|
|
Value *InVal = PN->removeIncomingValue(BB, false);
|
|
|
|
|
|
|
|
// Two options: either the InVal is a phi node defined in BB or it is some
|
|
|
|
// value that dominates BB.
|
|
|
|
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
|
|
|
|
if (InValPhi && InValPhi->getParent() == BB) {
|
|
|
|
// Add all of the input values of the input PHI as inputs of this phi.
|
|
|
|
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
|
|
|
|
PN->addIncoming(InValPhi->getIncomingValue(i),
|
|
|
|
InValPhi->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
// Otherwise, add one instance of the dominating value for each edge that
|
|
|
|
// we will be adding.
|
|
|
|
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
|
|
|
|
PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
|
|
PN->addIncoming(InVal, *PI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The PHIs are now updated, change everything that refers to BB to use
|
|
|
|
// DestBB and remove BB.
|
|
|
|
BB->replaceAllUsesWith(DestBB);
|
|
|
|
BB->eraseFromParent();
|
|
|
|
|
|
|
|
DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-03-31 04:06:36 +00:00
|
|
|
/// SplitEdgeNicely - Split the critical edge from TI to it's specified
|
|
|
|
/// successor if it will improve codegen. We only do this if the successor has
|
|
|
|
/// phi nodes (otherwise critical edges are ok). If there is already another
|
|
|
|
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
|
|
|
|
/// instead of introducing a new block.
|
|
|
|
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
|
|
|
|
BasicBlock *TIBB = TI->getParent();
|
|
|
|
BasicBlock *Dest = TI->getSuccessor(SuccNum);
|
|
|
|
assert(isa<PHINode>(Dest->begin()) &&
|
|
|
|
"This should only be called if Dest has a PHI!");
|
|
|
|
|
|
|
|
/// TIPHIValues - This array is lazily computed to determine the values of
|
|
|
|
/// PHIs in Dest that TI would provide.
|
|
|
|
std::vector<Value*> TIPHIValues;
|
|
|
|
|
|
|
|
// Check to see if Dest has any blocks that can be used as a split edge for
|
|
|
|
// this terminator.
|
|
|
|
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
|
|
|
|
BasicBlock *Pred = *PI;
|
|
|
|
// To be usable, the pred has to end with an uncond branch to the dest.
|
|
|
|
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
|
|
|
|
if (!PredBr || !PredBr->isUnconditional() ||
|
|
|
|
// Must be empty other than the branch.
|
|
|
|
&Pred->front() != PredBr)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Finally, since we know that Dest has phi nodes in it, we have to make
|
|
|
|
// sure that jumping to Pred will have the same affect as going to Dest in
|
|
|
|
// terms of PHI values.
|
|
|
|
PHINode *PN;
|
|
|
|
unsigned PHINo = 0;
|
|
|
|
bool FoundMatch = true;
|
|
|
|
for (BasicBlock::iterator I = Dest->begin();
|
|
|
|
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
|
|
|
|
if (PHINo == TIPHIValues.size())
|
|
|
|
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
|
|
|
|
|
|
|
|
// If the PHI entry doesn't work, we can't use this pred.
|
|
|
|
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
|
|
|
|
FoundMatch = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found a workable predecessor, change TI to branch to Succ.
|
|
|
|
if (FoundMatch) {
|
|
|
|
Dest->removePredecessor(TIBB);
|
|
|
|
TI->setSuccessor(SuccNum, Pred);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SplitCriticalEdge(TI, SuccNum, P, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
|
|
|
|
/// casting to the type of GEPI.
|
|
|
|
static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
|
|
|
|
Instruction *GEPI, Value *Ptr,
|
|
|
|
Value *PtrOffset) {
|
|
|
|
if (V) return V; // Already computed.
|
|
|
|
|
|
|
|
// Figure out the insertion point
|
|
|
|
BasicBlock::iterator InsertPt;
|
|
|
|
if (BB == GEPI->getParent()) {
|
|
|
|
// If GEP is already inserted into BB, insert right after the GEP.
|
|
|
|
InsertPt = GEPI;
|
|
|
|
++InsertPt;
|
|
|
|
} else {
|
|
|
|
// Otherwise, insert at the top of BB, after any PHI nodes
|
|
|
|
InsertPt = BB->begin();
|
|
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
|
|
|
|
// BB so that there is only one value live across basic blocks (the cast
|
|
|
|
// operand).
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(Ptr))
|
|
|
|
if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
|
|
|
|
Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
|
|
|
|
"", InsertPt);
|
|
|
|
|
|
|
|
// Add the offset, cast it to the right type.
|
|
|
|
Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
|
|
|
|
// Ptr is an integer type, GEPI is pointer type ==> IntToPtr
|
|
|
|
return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
|
|
|
|
"", InsertPt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
|
|
|
|
/// compute its value. The RepPtr value can be computed with Ptr+PtrOffset. One
|
|
|
|
/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
|
|
|
|
/// block, then ReplaceAllUsesWith'ing everything. However, we would prefer to
|
|
|
|
/// sink PtrOffset into user blocks where doing so will likely allow us to fold
|
|
|
|
/// the constant add into a load or store instruction. Additionally, if a user
|
|
|
|
/// is a pointer-pointer cast, we look through it to find its users.
|
|
|
|
static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
|
|
|
|
Constant *PtrOffset, BasicBlock *DefBB,
|
|
|
|
GetElementPtrInst *GEPI,
|
|
|
|
std::map<BasicBlock*,Instruction*> &InsertedExprs) {
|
|
|
|
while (!RepPtr->use_empty()) {
|
|
|
|
Instruction *User = cast<Instruction>(RepPtr->use_back());
|
|
|
|
|
|
|
|
// If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
|
|
|
|
// used for a Pointer-Pointer cast.
|
|
|
|
if (isa<BitCastInst>(User)) {
|
|
|
|
ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
|
|
|
|
|
|
|
|
// Drop the use of RepPtr. The cast is dead. Don't delete it now, else we
|
|
|
|
// could invalidate an iterator.
|
|
|
|
User->setOperand(0, UndefValue::get(RepPtr->getType()));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is a load of the pointer, or a store through the pointer, emit
|
|
|
|
// the increment into the load/store block.
|
|
|
|
Instruction *NewVal;
|
|
|
|
if (isa<LoadInst>(User) ||
|
|
|
|
(isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
|
|
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
|
|
|
|
User->getParent(), GEPI,
|
|
|
|
Ptr, PtrOffset);
|
|
|
|
} else {
|
|
|
|
// If this use is not foldable into the addressing mode, use a version
|
|
|
|
// emitted in the GEP block.
|
|
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
|
|
|
|
Ptr, PtrOffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GEPI->getType() != RepPtr->getType()) {
|
|
|
|
BasicBlock::iterator IP = NewVal;
|
|
|
|
++IP;
|
|
|
|
// NewVal must be a GEP which must be pointer type, so BitCast
|
|
|
|
NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
|
|
|
|
}
|
|
|
|
User->replaceUsesOfWith(RepPtr, NewVal);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
|
|
|
|
/// selection, we want to be a bit careful about some things. In particular, if
|
|
|
|
/// we have a GEP instruction that is used in a different block than it is
|
|
|
|
/// defined, the addressing expression of the GEP cannot be folded into loads or
|
|
|
|
/// stores that use it. In this case, decompose the GEP and move constant
|
|
|
|
/// indices into blocks that use it.
|
|
|
|
bool CodeGenPrepare::OptimizeGEPExpression(GetElementPtrInst *GEPI) {
|
|
|
|
// If this GEP is only used inside the block it is defined in, there is no
|
|
|
|
// need to rewrite it.
|
|
|
|
bool isUsedOutsideDefBB = false;
|
|
|
|
BasicBlock *DefBB = GEPI->getParent();
|
|
|
|
for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
|
|
|
|
UI != E; ++UI) {
|
|
|
|
if (cast<Instruction>(*UI)->getParent() != DefBB) {
|
|
|
|
isUsedOutsideDefBB = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!isUsedOutsideDefBB) return false;
|
|
|
|
|
|
|
|
// If this GEP has no non-zero constant indices, there is nothing we can do,
|
|
|
|
// ignore it.
|
|
|
|
bool hasConstantIndex = false;
|
|
|
|
bool hasVariableIndex = false;
|
|
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
|
|
|
|
if (!CI->isZero()) {
|
|
|
|
hasConstantIndex = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
hasVariableIndex = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is a "GEP X, 0, 0, 0", turn this into a cast.
|
|
|
|
if (!hasConstantIndex && !hasVariableIndex) {
|
|
|
|
/// The GEP operand must be a pointer, so must its result -> BitCast
|
|
|
|
Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
|
|
|
|
GEPI->getName(), GEPI);
|
|
|
|
GEPI->replaceAllUsesWith(NC);
|
|
|
|
GEPI->eraseFromParent();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
|
|
|
|
if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If we don't have target lowering info, we can't lower the GEP.
|
|
|
|
if (!TLI) return false;
|
|
|
|
const TargetData *TD = TLI->getTargetData();
|
|
|
|
|
|
|
|
// Otherwise, decompose the GEP instruction into multiplies and adds. Sum the
|
|
|
|
// constant offset (which we now know is non-zero) and deal with it later.
|
|
|
|
uint64_t ConstantOffset = 0;
|
|
|
|
const Type *UIntPtrTy = TD->getIntPtrType();
|
|
|
|
Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
|
|
|
|
const Type *Ty = GEPI->getOperand(0)->getType();
|
|
|
|
|
|
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
|
|
Value *Idx = *OI;
|
|
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
|
|
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
|
|
|
|
if (Field)
|
|
|
|
ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
|
|
|
|
Ty = StTy->getElementType(Field);
|
|
|
|
} else {
|
|
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
|
|
|
|
// Handle constant subscripts.
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
|
|
if (CI->getZExtValue() == 0) continue;
|
|
|
|
ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ptr = Ptr + Idx * ElementSize;
|
|
|
|
|
|
|
|
// Cast Idx to UIntPtrTy if needed.
|
|
|
|
Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
|
|
|
|
|
|
|
|
uint64_t ElementSize = TD->getTypeSize(Ty);
|
|
|
|
// Mask off bits that should not be set.
|
|
|
|
ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
|
|
Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
|
|
|
|
|
|
|
|
// Multiply by the element size and add to the base.
|
|
|
|
Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
|
|
|
|
Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure that the offset fits in uintptr_t.
|
|
|
|
ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
|
|
Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
|
|
|
|
|
|
|
|
// Okay, we have now emitted all of the variable index parts to the BB that
|
|
|
|
// the GEP is defined in. Loop over all of the using instructions, inserting
|
|
|
|
// an "add Ptr, ConstantOffset" into each block that uses it and update the
|
|
|
|
// instruction to use the newly computed value, making GEPI dead. When the
|
|
|
|
// user is a load or store instruction address, we emit the add into the user
|
|
|
|
// block, otherwise we use a canonical version right next to the gep (these
|
|
|
|
// won't be foldable as addresses, so we might as well share the computation).
|
|
|
|
|
|
|
|
std::map<BasicBlock*,Instruction*> InsertedExprs;
|
|
|
|
ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
|
|
|
|
|
|
|
|
// Finally, the GEP is dead, remove it.
|
|
|
|
GEPI->eraseFromParent();
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// SinkInvariantGEPIndex - If a GEP instruction has a variable index that has
|
|
|
|
/// been hoisted out of the loop by LICM pass, sink it back into the use BB
|
|
|
|
/// if it can be determined that the index computation can be folded into the
|
|
|
|
/// addressing mode of the load / store uses.
|
|
|
|
static bool SinkInvariantGEPIndex(BinaryOperator *BinOp,
|
|
|
|
const TargetLowering &TLI) {
|
|
|
|
// Only look at Add.
|
|
|
|
if (BinOp->getOpcode() != Instruction::Add)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// DestBBs - These are the blocks where a copy of BinOp will be inserted.
|
|
|
|
SmallSet<BasicBlock*, 8> DestBBs;
|
|
|
|
BasicBlock *DefBB = BinOp->getParent();
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
|
|
|
|
UI != E; ++UI) {
|
|
|
|
Instruction *GEPI = cast<Instruction>(*UI);
|
|
|
|
// Only look for GEP use in another block.
|
|
|
|
if (GEPI->getParent() == DefBB) continue;
|
|
|
|
|
|
|
|
if (isa<GetElementPtrInst>(GEPI)) {
|
|
|
|
// If the GEP has another variable index, abondon.
|
|
|
|
bool hasVariableIndex = false;
|
|
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
|
|
OE = GEPI->op_end(); OI != OE; ++OI)
|
|
|
|
if (*OI != BinOp && !isa<ConstantInt>(*OI)) {
|
|
|
|
hasVariableIndex = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (hasVariableIndex)
|
|
|
|
break;
|
|
|
|
|
|
|
|
BasicBlock *GEPIBB = GEPI->getParent();
|
|
|
|
for (Value::use_iterator UUI = GEPI->use_begin(), UE = GEPI->use_end();
|
|
|
|
UUI != UE; ++UUI) {
|
|
|
|
Instruction *GEPIUser = cast<Instruction>(*UUI);
|
|
|
|
const Type *UseTy = NULL;
|
|
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(GEPIUser))
|
|
|
|
UseTy = Load->getType();
|
|
|
|
else if (StoreInst *Store = dyn_cast<StoreInst>(GEPIUser))
|
|
|
|
UseTy = Store->getOperand(0)->getType();
|
|
|
|
|
|
|
|
// Check if it is possible to fold the expression to address mode.
|
|
|
|
if (UseTy && isa<ConstantInt>(BinOp->getOperand(1))) {
|
|
|
|
uint64_t Scale = TLI.getTargetData()->getTypeSize(UseTy);
|
|
|
|
int64_t Cst = cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue();
|
|
|
|
// e.g. load (gep i32 * %P, (X+42)) => load (%P + X*4 + 168).
|
|
|
|
if (TLI.isLegalAddressImmediate(Cst*Scale, UseTy) &&
|
|
|
|
(Scale == 1 || TLI.isLegalAddressScale(Scale, UseTy))) {
|
|
|
|
DestBBs.insert(GEPIBB);
|
|
|
|
MadeChange = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Nothing to do.
|
|
|
|
if (!MadeChange)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/// InsertedOps - Only insert a duplicate in each block once.
|
|
|
|
std::map<BasicBlock*, BinaryOperator*> InsertedOps;
|
|
|
|
for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
|
|
|
|
UI != E; ) {
|
|
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
BasicBlock *UserBB = User->getParent();
|
|
|
|
|
|
|
|
// Preincrement use iterator so we don't invalidate it.
|
|
|
|
++UI;
|
|
|
|
|
|
|
|
// If any user in this BB wants it, replace all the uses in the BB.
|
|
|
|
if (DestBBs.count(UserBB)) {
|
|
|
|
// Sink it into user block.
|
|
|
|
BinaryOperator *&InsertedOp = InsertedOps[UserBB];
|
|
|
|
if (!InsertedOp) {
|
|
|
|
BasicBlock::iterator InsertPt = UserBB->begin();
|
|
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
|
|
|
|
InsertedOp =
|
|
|
|
BinaryOperator::create(BinOp->getOpcode(), BinOp->getOperand(0),
|
|
|
|
BinOp->getOperand(1), "", InsertPt);
|
|
|
|
}
|
|
|
|
|
|
|
|
User->replaceUsesOfWith(BinOp, InsertedOp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BinOp->use_empty())
|
|
|
|
BinOp->eraseFromParent();
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// OptimizeNoopCopyExpression - We have determined that the specified cast
|
|
|
|
/// instruction is a noop copy (e.g. it's casting from one pointer type to
|
|
|
|
/// another, int->uint, or int->sbyte on PPC.
|
|
|
|
///
|
|
|
|
/// Return true if any changes are made.
|
|
|
|
static bool OptimizeNoopCopyExpression(CastInst *CI) {
|
|
|
|
BasicBlock *DefBB = CI->getParent();
|
|
|
|
|
|
|
|
/// InsertedCasts - Only insert a cast in each block once.
|
|
|
|
std::map<BasicBlock*, CastInst*> InsertedCasts;
|
|
|
|
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
|
|
|
|
UI != E; ) {
|
|
|
|
Use &TheUse = UI.getUse();
|
|
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
|
|
|
|
// Figure out which BB this cast is used in. For PHI's this is the
|
|
|
|
// appropriate predecessor block.
|
|
|
|
BasicBlock *UserBB = User->getParent();
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
|
|
unsigned OpVal = UI.getOperandNo()/2;
|
|
|
|
UserBB = PN->getIncomingBlock(OpVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Preincrement use iterator so we don't invalidate it.
|
|
|
|
++UI;
|
|
|
|
|
|
|
|
// If this user is in the same block as the cast, don't change the cast.
|
|
|
|
if (UserBB == DefBB) continue;
|
|
|
|
|
|
|
|
// If we have already inserted a cast into this block, use it.
|
|
|
|
CastInst *&InsertedCast = InsertedCasts[UserBB];
|
|
|
|
|
|
|
|
if (!InsertedCast) {
|
|
|
|
BasicBlock::iterator InsertPt = UserBB->begin();
|
|
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
|
|
|
|
InsertedCast =
|
|
|
|
CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
|
|
|
|
InsertPt);
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Replace a use of the cast with a use of the new casat.
|
|
|
|
TheUse = InsertedCast;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we removed all uses, nuke the cast.
|
|
|
|
if (CI->use_empty())
|
|
|
|
CI->eraseFromParent();
|
|
|
|
|
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// In this pass we look for GEP and cast instructions that are used
|
|
|
|
// across basic blocks and rewrite them to improve basic-block-at-a-time
|
|
|
|
// selection.
|
|
|
|
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
|
|
|
|
bool MadeChange = false;
|
|
|
|
|
|
|
|
// Split all critical edges where the dest block has a PHI and where the phi
|
|
|
|
// has shared immediate operands.
|
|
|
|
TerminatorInst *BBTI = BB.getTerminator();
|
|
|
|
if (BBTI->getNumSuccessors() > 1) {
|
|
|
|
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
|
|
|
|
if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
|
|
|
|
isCriticalEdge(BBTI, i, true))
|
|
|
|
SplitEdgeNicely(BBTI, i, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
|
|
|
|
Instruction *I = BBI++;
|
|
|
|
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
|
|
// If we found an inline asm expession, and if the target knows how to
|
|
|
|
// lower it to normal LLVM code, do so now.
|
|
|
|
if (TLI && isa<InlineAsm>(CI->getCalledValue()))
|
|
|
|
if (const TargetAsmInfo *TAI =
|
|
|
|
TLI->getTargetMachine().getTargetAsmInfo()) {
|
|
|
|
if (TAI->ExpandInlineAsm(CI))
|
|
|
|
BBI = BB.begin();
|
|
|
|
}
|
|
|
|
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
|
|
|
|
MadeChange |= OptimizeGEPExpression(GEPI);
|
|
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
|
|
// If the source of the cast is a constant, then this should have
|
|
|
|
// already been constant folded. The only reason NOT to constant fold
|
|
|
|
// it is if something (e.g. LSR) was careful to place the constant
|
|
|
|
// evaluation in a block other than then one that uses it (e.g. to hoist
|
|
|
|
// the address of globals out of a loop). If this is the case, we don't
|
|
|
|
// want to forward-subst the cast.
|
|
|
|
if (isa<Constant>(CI->getOperand(0)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!TLI) continue;
|
|
|
|
|
|
|
|
// If this is a noop copy, sink it into user blocks to reduce the number
|
|
|
|
// of virtual registers that must be created and coallesced.
|
|
|
|
MVT::ValueType SrcVT = TLI->getValueType(CI->getOperand(0)->getType());
|
|
|
|
MVT::ValueType DstVT = TLI->getValueType(CI->getType());
|
|
|
|
|
|
|
|
// This is an fp<->int conversion?
|
|
|
|
if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If this is an extension, it will be a zero or sign extension, which
|
|
|
|
// isn't a noop.
|
|
|
|
if (SrcVT < DstVT) continue;
|
|
|
|
|
|
|
|
// If these values will be promoted, find out what they will be promoted
|
|
|
|
// to. This helps us consider truncates on PPC as noop copies when they
|
|
|
|
// are.
|
|
|
|
if (TLI->getTypeAction(SrcVT) == TargetLowering::Promote)
|
|
|
|
SrcVT = TLI->getTypeToTransformTo(SrcVT);
|
|
|
|
if (TLI->getTypeAction(DstVT) == TargetLowering::Promote)
|
|
|
|
DstVT = TLI->getTypeToTransformTo(DstVT);
|
|
|
|
|
|
|
|
// If, after promotion, these are the same types, this is a noop copy.
|
|
|
|
if (SrcVT == DstVT)
|
|
|
|
MadeChange |= OptimizeNoopCopyExpression(CI);
|
|
|
|
} else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I)) {
|
|
|
|
if (TLI)
|
|
|
|
MadeChange |= SinkInvariantGEPIndex(BinOp, *TLI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|