llvm-6502/unittests/Support/MemoryTest.cpp

358 lines
11 KiB
C++
Raw Normal View History

//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Memory.h"
#include "llvm/Support/Process.h"
#include "gtest/gtest.h"
#include <cstdlib>
using namespace llvm;
using namespace sys;
namespace {
class MappedMemoryTest : public ::testing::TestWithParam<unsigned> {
public:
MappedMemoryTest() {
Flags = GetParam();
PageSize = sys::process::get_self()->page_size();
}
protected:
// Adds RW flags to permit testing of the resulting memory
unsigned getTestableEquivalent(unsigned RequestedFlags) {
switch (RequestedFlags) {
case Memory::MF_READ:
case Memory::MF_WRITE:
case Memory::MF_READ|Memory::MF_WRITE:
return Memory::MF_READ|Memory::MF_WRITE;
case Memory::MF_READ|Memory::MF_EXEC:
case Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC:
case Memory::MF_EXEC:
return Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC;
}
// Default in case values are added to the enum, as required by some compilers
return Memory::MF_READ|Memory::MF_WRITE;
}
// Returns true if the memory blocks overlap
bool doesOverlap(MemoryBlock M1, MemoryBlock M2) {
if (M1.base() == M2.base())
return true;
if (M1.base() > M2.base())
return (unsigned char *)M2.base() + M2.size() > M1.base();
return (unsigned char *)M1.base() + M1.size() > M2.base();
}
unsigned Flags;
size_t PageSize;
};
TEST_P(MappedMemoryTest, AllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleAllocAndRelease) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, BasicWrite) {
// This test applies only to readable and writeable combinations
if (Flags &&
!((Flags & Memory::MF_READ) && (Flags & Memory::MF_WRITE)))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
int *a = (int*)M1.base();
*a = 1;
EXPECT_EQ(1, *a);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleWrite) {
// This test applies only to readable and writeable combinations
if (Flags &&
!((Flags & Memory::MF_READ) && (Flags & Memory::MF_WRITE)))
return;
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(1U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(64 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(64U * sizeof(int), M4.size());
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
// Verify that M2 remains unaffected by other activity
for (int i = 0; i < 8; i++) {
EXPECT_EQ(i, y[i]);
}
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, EnabledWrite) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(2 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(2U * sizeof(int), M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(8U * sizeof(int), M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(4U * sizeof(int), M3.size());
EXPECT_FALSE(Memory::protectMappedMemory(M1, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M2, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M3, getTestableEquivalent(Flags)));
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (unsigned int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_EQ(6, y[6]);
MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M4.base());
EXPECT_LE(16U, M4.size());
EXPECT_EQ(error_code::success(), Memory::protectMappedMemory(M4, getTestableEquivalent(Flags)));
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, SuccessiveNear) {
error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &M1, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &M2, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, DuplicateNear) {
error_code EC;
MemoryBlock Near((void*)(3*PageSize), 16);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroNear) {
error_code EC;
MemoryBlock Near(0, 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroSizeNear) {
error_code EC;
MemoryBlock Near((void*)(4*PageSize), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(16U, M1.size());
EXPECT_NE((void*)0, M2.base());
EXPECT_LE(64U, M2.size());
EXPECT_NE((void*)0, M3.base());
EXPECT_LE(32U, M3.size());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, UnalignedNear) {
error_code EC;
MemoryBlock Near((void*)(2*PageSize+5), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(15, &Near, Flags, EC);
EXPECT_EQ(error_code::success(), EC);
EXPECT_NE((void*)0, M1.base());
EXPECT_LE(sizeof(int), M1.size());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
// Note that Memory::MF_WRITE is not supported exclusively across
// operating systems and architectures and can imply MF_READ|MF_WRITE
unsigned MemoryFlags[] = {
Memory::MF_READ,
Memory::MF_WRITE,
Memory::MF_READ|Memory::MF_WRITE,
Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC
};
INSTANTIATE_TEST_CASE_P(AllocationTests,
MappedMemoryTest,
::testing::ValuesIn(MemoryFlags));
} // anonymous namespace