mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-20 09:30:43 +00:00
Tidy up. Trailing whitespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149649 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f374486659
commit
00e403abe3
@ -37,26 +37,26 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
|
||||
unsigned CopyAlign = MI->getAlignment();
|
||||
|
||||
if (CopyAlign < MinAlign) {
|
||||
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
|
||||
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
|
||||
MinAlign, false));
|
||||
return MI;
|
||||
}
|
||||
|
||||
|
||||
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
|
||||
// load/store.
|
||||
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
|
||||
if (MemOpLength == 0) return 0;
|
||||
|
||||
|
||||
// Source and destination pointer types are always "i8*" for intrinsic. See
|
||||
// if the size is something we can handle with a single primitive load/store.
|
||||
// A single load+store correctly handles overlapping memory in the memmove
|
||||
// case.
|
||||
unsigned Size = MemOpLength->getZExtValue();
|
||||
if (Size == 0) return MI; // Delete this mem transfer.
|
||||
|
||||
|
||||
if (Size > 8 || (Size&(Size-1)))
|
||||
return 0; // If not 1/2/4/8 bytes, exit.
|
||||
|
||||
|
||||
// Use an integer load+store unless we can find something better.
|
||||
unsigned SrcAddrSp =
|
||||
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
|
||||
@ -66,7 +66,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
|
||||
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
|
||||
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
|
||||
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
|
||||
|
||||
|
||||
// Memcpy forces the use of i8* for the source and destination. That means
|
||||
// that if you're using memcpy to move one double around, you'll get a cast
|
||||
// from double* to i8*. We'd much rather use a double load+store rather than
|
||||
@ -94,20 +94,20 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
if (SrcETy->isSingleValueType()) {
|
||||
NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
|
||||
NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// If the memcpy/memmove provides better alignment info than we can
|
||||
// infer, use it.
|
||||
SrcAlign = std::max(SrcAlign, CopyAlign);
|
||||
DstAlign = std::max(DstAlign, CopyAlign);
|
||||
|
||||
|
||||
Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
|
||||
Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
|
||||
LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
|
||||
@ -127,7 +127,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
|
||||
Alignment, false));
|
||||
return MI;
|
||||
}
|
||||
|
||||
|
||||
// Extract the length and alignment and fill if they are constant.
|
||||
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
|
||||
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
|
||||
@ -135,14 +135,14 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
|
||||
return 0;
|
||||
uint64_t Len = LenC->getZExtValue();
|
||||
Alignment = MI->getAlignment();
|
||||
|
||||
|
||||
// If the length is zero, this is a no-op
|
||||
if (Len == 0) return MI; // memset(d,c,0,a) -> noop
|
||||
|
||||
|
||||
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
|
||||
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
|
||||
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
|
||||
|
||||
|
||||
Value *Dest = MI->getDest();
|
||||
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
|
||||
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
|
||||
@ -150,13 +150,13 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
|
||||
|
||||
// Alignment 0 is identity for alignment 1 for memset, but not store.
|
||||
if (Alignment == 0) Alignment = 1;
|
||||
|
||||
|
||||
// Extract the fill value and store.
|
||||
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
|
||||
StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
|
||||
MI->isVolatile());
|
||||
S->setAlignment(Alignment);
|
||||
|
||||
|
||||
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
||||
MI->setLength(Constant::getNullValue(LenC->getType()));
|
||||
return MI;
|
||||
@ -165,7 +165,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// visitCallInst - CallInst simplification. This mostly only handles folding
|
||||
/// visitCallInst - CallInst simplification. This mostly only handles folding
|
||||
/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
|
||||
/// the heavy lifting.
|
||||
///
|
||||
@ -182,7 +182,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
CI.setDoesNotThrow();
|
||||
return &CI;
|
||||
}
|
||||
|
||||
|
||||
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
|
||||
if (!II) return visitCallSite(&CI);
|
||||
|
||||
@ -203,7 +203,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
// alignment is sufficient.
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// No other transformations apply to volatile transfers.
|
||||
if (MI->isVolatile())
|
||||
return 0;
|
||||
@ -242,13 +242,13 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
|
||||
if (Changed) return II;
|
||||
}
|
||||
|
||||
|
||||
switch (II->getIntrinsicID()) {
|
||||
default: break;
|
||||
case Intrinsic::objectsize: {
|
||||
// We need target data for just about everything so depend on it.
|
||||
if (!TD) break;
|
||||
|
||||
|
||||
Type *ReturnTy = CI.getType();
|
||||
uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
|
||||
|
||||
@ -324,7 +324,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
|
||||
if (Operand->getIntrinsicID() == Intrinsic::bswap)
|
||||
return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
|
||||
|
||||
|
||||
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
|
||||
if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
|
||||
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
|
||||
@ -336,7 +336,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
return new TruncInst(V, TI->getType());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
break;
|
||||
case Intrinsic::powi:
|
||||
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
||||
@ -368,7 +368,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
if ((Mask & KnownZero) == Mask)
|
||||
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
|
||||
APInt(BitWidth, TrailingZeros)));
|
||||
|
||||
|
||||
}
|
||||
break;
|
||||
case Intrinsic::ctlz: {
|
||||
@ -387,7 +387,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
if ((Mask & KnownZero) == Mask)
|
||||
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
|
||||
APInt(BitWidth, LeadingZeros)));
|
||||
|
||||
|
||||
}
|
||||
break;
|
||||
case Intrinsic::uadd_with_overflow: {
|
||||
@ -450,7 +450,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
// X + undef -> undef
|
||||
if (isa<UndefValue>(II->getArgOperand(1)))
|
||||
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
|
||||
|
||||
|
||||
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
||||
// X + 0 -> {X, false}
|
||||
if (RHS->isZero()) {
|
||||
@ -471,7 +471,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
if (isa<UndefValue>(II->getArgOperand(0)) ||
|
||||
isa<UndefValue>(II->getArgOperand(1)))
|
||||
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
|
||||
|
||||
|
||||
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
||||
// X - 0 -> {X, false}
|
||||
if (RHS->isZero()) {
|
||||
@ -479,7 +479,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
UndefValue::get(II->getArgOperand(0)->getType()),
|
||||
ConstantInt::getFalse(II->getContext())
|
||||
};
|
||||
Constant *Struct =
|
||||
Constant *Struct =
|
||||
ConstantStruct::get(cast<StructType>(II->getType()), V);
|
||||
return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
|
||||
}
|
||||
@ -528,19 +528,19 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
// X * undef -> undef
|
||||
if (isa<UndefValue>(II->getArgOperand(1)))
|
||||
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
|
||||
|
||||
|
||||
if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
||||
// X*0 -> {0, false}
|
||||
if (RHSI->isZero())
|
||||
return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
|
||||
|
||||
|
||||
// X * 1 -> {X, false}
|
||||
if (RHSI->equalsInt(1)) {
|
||||
Constant *V[] = {
|
||||
UndefValue::get(II->getArgOperand(0)->getType()),
|
||||
ConstantInt::getFalse(II->getContext())
|
||||
};
|
||||
Constant *Struct =
|
||||
Constant *Struct =
|
||||
ConstantStruct::get(cast<StructType>(II->getType()), V);
|
||||
return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
|
||||
}
|
||||
@ -559,7 +559,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
case Intrinsic::ppc_altivec_stvxl:
|
||||
// Turn stvx -> store if the pointer is known aligned.
|
||||
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
|
||||
Type *OpPtrTy =
|
||||
Type *OpPtrTy =
|
||||
PointerType::getUnqual(II->getArgOperand(0)->getType());
|
||||
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
||||
return new StoreInst(II->getArgOperand(0), Ptr);
|
||||
@ -570,7 +570,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
case Intrinsic::x86_sse2_storeu_dq:
|
||||
// Turn X86 storeu -> store if the pointer is known aligned.
|
||||
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
|
||||
Type *OpPtrTy =
|
||||
Type *OpPtrTy =
|
||||
PointerType::getUnqual(II->getArgOperand(1)->getType());
|
||||
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
|
||||
return new StoreInst(II->getArgOperand(1), Ptr);
|
||||
@ -626,7 +626,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
|
||||
assert(Mask->getType()->getVectorNumElements() == 16 &&
|
||||
"Bad type for intrinsic!");
|
||||
|
||||
|
||||
// Check that all of the elements are integer constants or undefs.
|
||||
bool AllEltsOk = true;
|
||||
for (unsigned i = 0; i != 16; ++i) {
|
||||
@ -637,7 +637,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (AllEltsOk) {
|
||||
// Cast the input vectors to byte vectors.
|
||||
Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
|
||||
@ -645,24 +645,24 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
|
||||
Mask->getType());
|
||||
Value *Result = UndefValue::get(Op0->getType());
|
||||
|
||||
|
||||
// Only extract each element once.
|
||||
Value *ExtractedElts[32];
|
||||
memset(ExtractedElts, 0, sizeof(ExtractedElts));
|
||||
|
||||
|
||||
for (unsigned i = 0; i != 16; ++i) {
|
||||
if (isa<UndefValue>(Mask->getAggregateElement(i)))
|
||||
continue;
|
||||
unsigned Idx =
|
||||
unsigned Idx =
|
||||
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
|
||||
Idx &= 31; // Match the hardware behavior.
|
||||
|
||||
|
||||
if (ExtractedElts[Idx] == 0) {
|
||||
ExtractedElts[Idx] =
|
||||
ExtractedElts[Idx] =
|
||||
Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
|
||||
Builder->getInt32(Idx&15));
|
||||
}
|
||||
|
||||
|
||||
// Insert this value into the result vector.
|
||||
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
|
||||
Builder->getInt32(i));
|
||||
@ -708,7 +708,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
return EraseInstFromFunction(CI);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Scan down this block to see if there is another stack restore in the
|
||||
// same block without an intervening call/alloca.
|
||||
BasicBlock::iterator BI = II;
|
||||
@ -733,7 +733,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If the stack restore is in a return, resume, or unwind block and if there
|
||||
// are no allocas or calls between the restore and the return, nuke the
|
||||
// restore.
|
||||
@ -753,7 +753,7 @@ Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
|
||||
return visitCallSite(&II);
|
||||
}
|
||||
|
||||
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
|
||||
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
|
||||
/// passed through the varargs area, we can eliminate the use of the cast.
|
||||
static bool isSafeToEliminateVarargsCast(const CallSite CS,
|
||||
const CastInst * const CI,
|
||||
@ -768,7 +768,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
|
||||
if (!CS.isByValArgument(ix))
|
||||
return true;
|
||||
|
||||
Type* SrcTy =
|
||||
Type* SrcTy =
|
||||
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
|
||||
Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
|
||||
if (!SrcTy->isSized() || !DstTy->isSized())
|
||||
@ -812,7 +812,7 @@ public:
|
||||
} // end anonymous namespace
|
||||
|
||||
// Try to fold some different type of calls here.
|
||||
// Currently we're only working with the checking functions, memcpy_chk,
|
||||
// Currently we're only working with the checking functions, memcpy_chk,
|
||||
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
|
||||
// strcat_chk and strncat_chk.
|
||||
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
|
||||
@ -921,7 +921,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
|
||||
!CalleeF->isDeclaration()) {
|
||||
Instruction *OldCall = CS.getInstruction();
|
||||
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
|
||||
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
|
||||
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
|
||||
OldCall);
|
||||
// If OldCall dues not return void then replaceAllUsesWith undef.
|
||||
// This allows ValueHandlers and custom metadata to adjust itself.
|
||||
@ -929,7 +929,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
|
||||
ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
|
||||
if (isa<CallInst>(OldCall))
|
||||
return EraseInstFromFunction(*OldCall);
|
||||
|
||||
|
||||
// We cannot remove an invoke, because it would change the CFG, just
|
||||
// change the callee to a null pointer.
|
||||
cast<InvokeInst>(OldCall)->setCalledFunction(
|
||||
@ -1069,14 +1069,14 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
|
||||
Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
|
||||
if (Attrs & Attribute::typeIncompatible(ParamTy))
|
||||
return false; // Attribute not compatible with transformed value.
|
||||
|
||||
|
||||
// If the parameter is passed as a byval argument, then we have to have a
|
||||
// sized type and the sized type has to have the same size as the old type.
|
||||
if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
|
||||
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
|
||||
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
|
||||
return false;
|
||||
|
||||
|
||||
Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
|
||||
if (TD->getTypeAllocSize(CurElTy) !=
|
||||
TD->getTypeAllocSize(ParamPTy->getElementType()))
|
||||
@ -1112,7 +1112,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
|
||||
cast<FunctionType>(APTy->getElementType())->getNumParams())
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
|
||||
!CallerPAL.isEmpty())
|
||||
// In this case we have more arguments than the new function type, but we
|
||||
@ -1126,7 +1126,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Okay, we decided that this is a safe thing to do: go ahead and start
|
||||
// inserting cast instructions as necessary.
|
||||
std::vector<Value*> Args;
|
||||
@ -1364,11 +1364,11 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
|
||||
|
||||
// Replace the trampoline call with a direct call. Let the generic
|
||||
// code sort out any function type mismatches.
|
||||
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
|
||||
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
|
||||
FTy->isVarArg());
|
||||
Constant *NewCallee =
|
||||
NestF->getType() == PointerType::getUnqual(NewFTy) ?
|
||||
NestF : ConstantExpr::getBitCast(NestF,
|
||||
NestF : ConstantExpr::getBitCast(NestF,
|
||||
PointerType::getUnqual(NewFTy));
|
||||
const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
|
||||
NewAttrs.end());
|
||||
@ -1397,7 +1397,7 @@ InstCombiner::transformCallThroughTrampoline(CallSite CS,
|
||||
// parameter, there is no need to adjust the argument list. Let the generic
|
||||
// code sort out any function type mismatches.
|
||||
Constant *NewCallee =
|
||||
NestF->getType() == PTy ? NestF :
|
||||
NestF->getType() == PTy ? NestF :
|
||||
ConstantExpr::getBitCast(NestF, PTy);
|
||||
CS.setCalledFunction(NewCallee);
|
||||
return CS.getInstruction();
|
||||
|
Loading…
Reference in New Issue
Block a user