Use range-based for loops. NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238093 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Craig Topper 2015-05-23 08:01:41 +00:00
parent 762dbd0574
commit 01fc7e7a0f

View File

@ -185,9 +185,8 @@ RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
// Update RegUses. The data structure is not optimized for this purpose;
// we must iterate through it and update each of the bit vectors.
for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
I != E; ++I) {
SmallBitVector &UsedByIndices = I->second.UsedByIndices;
for (auto &I : RegUsesMap) {
SmallBitVector &UsedByIndices = I.second.UsedByIndices;
if (LUIdx < UsedByIndices.size())
UsedByIndices[LUIdx] =
LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
@ -297,9 +296,8 @@ static void DoInitialMatch(const SCEV *S, Loop *L,
// Look at add operands.
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
I != E; ++I)
DoInitialMatch(*I, L, Good, Bad, SE);
for (const SCEV *S : Add->operands())
DoInitialMatch(S, L, Good, Bad, SE);
return;
}
@ -3847,10 +3845,8 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// If the new formula has a constant in a register, and adding the
// constant value to the immediate would produce a value closer to
// zero than the immediate itself, then the formula isn't worthwhile.
for (SmallVectorImpl<const SCEV *>::const_iterator
J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
J != JE; ++J)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
for (const SCEV *J : NewF.BaseRegs)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(J))
if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
std::abs(NewF.BaseOffset)) &&
(C->getValue()->getValue() +
@ -3953,9 +3949,7 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
}
else {
SmallVector<const SCEV *, 4> Key;
for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
JE = F.BaseRegs.end(); J != JE; ++J) {
const SCEV *Reg = *J;
for (const SCEV *Reg : F.BaseRegs) {
if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
Key.push_back(Reg);
}
@ -4017,9 +4011,8 @@ static const size_t ComplexityLimit = UINT16_MAX;
/// isn't always sufficient.
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
size_t Power = 1;
for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
E = Uses.end(); I != E; ++I) {
size_t FSize = I->Formulae.size();
for (const LSRUse &I : Uses) {
size_t FSize = I.Formulae.size();
if (FSize >= ComplexityLimit) {
Power = ComplexityLimit;
break;
@ -4110,9 +4103,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
LSRUse &LU = Uses[LUIdx];
for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
E = LU.Formulae.end(); I != E; ++I) {
const Formula &F = *I;
for (const Formula &F : LU.Formulae) {
if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
continue;
@ -4129,9 +4120,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
// Update the relocs to reference the new use.
for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
E = Fixups.end(); I != E; ++I) {
LSRFixup &Fixup = *I;
for (LSRFixup &Fixup : Fixups) {
if (Fixup.LUIdx == LUIdx) {
Fixup.LUIdx = LUThatHas - &Uses.front();
Fixup.Offset += F.BaseOffset;
@ -4212,9 +4201,7 @@ void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
// to be a good reuse register candidate.
const SCEV *Best = nullptr;
unsigned BestNum = 0;
for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
I != E; ++I) {
const SCEV *Reg = *I;
for (const SCEV *Reg : RegUses) {
if (Taken.count(Reg))
continue;
if (!Best)
@ -4302,17 +4289,12 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
SmallPtrSet<const SCEV *, 16> NewRegs;
Cost NewCost;
for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
E = LU.Formulae.end(); I != E; ++I) {
const Formula &F = *I;
for (const Formula &F : LU.Formulae) {
// Ignore formulae which may not be ideal in terms of register reuse of
// ReqRegs. The formula should use all required registers before
// introducing new ones.
int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
JE = ReqRegs.end(); J != JE; ++J) {
const SCEV *Reg = *J;
for (const SCEV *Reg : ReqRegs) {
if ((F.ScaledReg && F.ScaledReg == Reg) ||
std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
F.BaseRegs.end()) {
@ -4420,9 +4402,7 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
bool AllDominate = true;
Instruction *BetterPos = nullptr;
Instruction *Tentative = IDom->getTerminator();
for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
E = Inputs.end(); I != E; ++I) {
Instruction *Inst = *I;
for (Instruction *Inst : Inputs) {
if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
AllDominate = false;
break;
@ -4469,9 +4449,7 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
}
// The expansion must also be dominated by the increment positions of any
// loops it for which it is using post-inc mode.
for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
E = LF.PostIncLoops.end(); I != E; ++I) {
const Loop *PIL = *I;
for (const Loop *PIL : LF.PostIncLoops) {
if (PIL == L) continue;
// Be dominated by the loop exit.
@ -4546,9 +4524,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
SmallVector<const SCEV *, 8> Ops;
// Expand the BaseRegs portion.
for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
E = F.BaseRegs.end(); I != E; ++I) {
const SCEV *Reg = *I;
for (const SCEV *Reg : F.BaseRegs) {
assert(!Reg->isZero() && "Zero allocated in a base register!");
// If we're expanding for a post-inc user, make the post-inc adjustment.
@ -4829,25 +4805,20 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
// Mark phi nodes that terminate chains so the expander tries to reuse them.
for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
for (const IVChain &Chain : IVChainVec) {
if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
Rewriter.setChainedPhi(PN);
}
// Expand the new value definitions and update the users.
for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
E = Fixups.end(); I != E; ++I) {
const LSRFixup &Fixup = *I;
for (const LSRFixup &Fixup : Fixups) {
Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Changed = true;
}
for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
GenerateIVChain(*ChainI, Rewriter, DeadInsts);
for (const IVChain &Chain : IVChainVec) {
GenerateIVChain(Chain, Rewriter, DeadInsts);
Changed = true;
}
// Clean up after ourselves. This must be done before deleting any
@ -4874,10 +4845,9 @@ LSRInstance::LSRInstance(Loop *L, Pass *P)
// If there's too much analysis to be done, bail early. We won't be able to
// model the problem anyway.
unsigned NumUsers = 0;
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
for (const IVStrideUse &U : IU) {
if (++NumUsers > MaxIVUsers) {
DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
<< "\n");
DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
return;
}
}
@ -4946,14 +4916,10 @@ LSRInstance::LSRInstance(Loop *L, Pass *P)
#ifndef NDEBUG
// Formulae should be legal.
for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
I != E; ++I) {
const LSRUse &LU = *I;
for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
JE = LU.Formulae.end();
J != JE; ++J)
for (const LSRUse &LU : Uses) {
for (const Formula &F : LU.Formulae)
assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
*J) && "Illegal formula generated!");
F) && "Illegal formula generated!");
};
#endif
@ -4967,44 +4933,38 @@ void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
OS << "LSR has identified the following interesting factors and types: ";
bool First = true;
for (SmallSetVector<int64_t, 8>::const_iterator
I = Factors.begin(), E = Factors.end(); I != E; ++I) {
for (int64_t I : Factors) {
if (!First) OS << ", ";
First = false;
OS << '*' << *I;
OS << '*' << I;
}
for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
for (Type *I : Types) {
if (!First) OS << ", ";
First = false;
OS << '(' << **I << ')';
OS << '(' << *I << ')';
}
OS << '\n';
}
void LSRInstance::print_fixups(raw_ostream &OS) const {
OS << "LSR is examining the following fixup sites:\n";
for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
E = Fixups.end(); I != E; ++I) {
for (const LSRFixup &LF : Fixups) {
dbgs() << " ";
I->print(OS);
LF.print(OS);
OS << '\n';
}
}
void LSRInstance::print_uses(raw_ostream &OS) const {
OS << "LSR is examining the following uses:\n";
for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
E = Uses.end(); I != E; ++I) {
const LSRUse &LU = *I;
for (const LSRUse &LU : Uses) {
dbgs() << " ";
LU.print(OS);
OS << '\n';
for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
JE = LU.Formulae.end(); J != JE; ++J) {
for (const Formula &F : LU.Formulae) {
OS << " ";
J->print(OS);
F.print(OS);
OS << '\n';
}
}