After splitting, the remaining LiveInterval may be fragmented into multiple

connected components. These components should be allocated different virtual
registers because there is no reason for them to be allocated together.

Add the ConnectedVNInfoEqClasses class to calculate the connected components,
and move values to new LiveIntervals.

Use it from SplitKit::rewrite by creating new virtual registers for the
components.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116006 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen
2010-10-07 23:34:34 +00:00
parent c6897706b7
commit 0253df9a89
3 changed files with 174 additions and 12 deletions

View File

@ -702,3 +702,113 @@ void LiveInterval::dump() const {
void LiveRange::print(raw_ostream &os) const {
os << *this;
}
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
/// LiveInterval into equivalence clases of connected components. A
/// LiveInterval that has multiple connected components can be broken into
/// multiple LiveIntervals.
void ConnectedVNInfoEqClasses::Connect(unsigned a, unsigned b) {
// Add new eq classes as needed.
for (unsigned i = eqClass_.size(), m = std::max(a, b); i <= m; ++i)
eqClass_.push_back(i);
unsigned eqa = eqClass_[a];
unsigned eqb = eqClass_[b];
if (eqa == eqb)
return;
if (eqa > eqb)
std::swap(eqa, eqb);
// Now, eqa < eqb. Switch all eqb members over to eqa.
for (unsigned i = eqb, e = eqClass_.size(); i != e; ++i)
if (eqClass_[i] == eqb)
eqClass_[i] = eqa;
}
unsigned ConnectedVNInfoEqClasses::Renumber() {
// No values at all.
if (eqClass_.empty())
return 0;
// Common case: A single connected component.
if (eqClass_.back() == 0)
return 1;
// Renumber classes. We use the fact that eqClass_[i] == i for class leaders.
unsigned count = 0;
for (unsigned i = 0, e = eqClass_.size(); i != e; ++i) {
unsigned q = eqClass_[i];
if (q == i)
eqClass_[i] = count++;
else
eqClass_[i] = eqClass_[q];
}
return count;
}
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
// Determine connections.
eqClass_.clear();
for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->id == eqClass_.size())
eqClass_.push_back(VNI->id);
assert(!VNI->isUnused() && "Cannot handle unused values");
if (VNI->isPHIDef()) {
const MachineBasicBlock *MBB = lis_.getMBBFromIndex(VNI->def);
assert(MBB && "Phi-def has no defining MBB");
// Connect to values live out of predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI)
if (const VNInfo *PVNI =
LI->getVNInfoAt(lis_.getMBBEndIdx(*PI).getPrevSlot()))
Connect(VNI->id, PVNI->id);
} else {
// Normal value defined by an instruction. Check for two-addr redef.
// FIXME: This could be coincidental. Should we really check for a tied
// operand constraint?
if (const VNInfo *UVNI = LI->getVNInfoAt(VNI->def.getUseIndex()))
Connect(VNI->id, UVNI->id);
}
}
return Renumber();
}
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[]) {
assert(LIV[0] && "LIV[0] must be set");
LiveInterval &LI = *LIV[0];
// Check that they likely ran Classify() on LIV[0] first.
assert(eqClass_.size() == LI.getNumValNums() && "Bad classification data");
// First move runs to new intervals.
LiveInterval::iterator J = LI.begin(), E = LI.end();
while (J != E && eqClass_[J->valno->id] == 0)
++J;
for (LiveInterval::iterator I = J; I != E; ++I) {
if (unsigned eq = eqClass_[I->valno->id]) {
assert(LIV[eq]->empty() || LIV[eq]->expiredAt(I->start) &&
"New intervals should be empty");
LIV[eq]->ranges.push_back(*I);
} else
*J++ = *I;
}
LI.ranges.erase(J, E);
// Transfer VNInfos to their new owners and renumber them.
unsigned j = 0, e = LI.getNumValNums();
while (j != e && eqClass_[j] == 0)
++j;
for (unsigned i = j; i != e; ++i) {
VNInfo *VNI = LI.getValNumInfo(i);
if (unsigned eq = eqClass_[i]) {
VNI->id = LIV[eq]->getNumValNums();
LIV[eq]->valnos.push_back(VNI);
} else {
VNI->id = j;
LI.valnos[j++] = VNI;
}
}
LI.valnos.resize(j);
}