Compute lists of sub-regs, super-regs, and overlapping regs.

Besides moving structural computations to CodeGenRegisters.cpp, this
also well-defines the order of these lists:

- Sub-register lists come from a pre-order traversal of the graph
  defined by the SubRegs lists in the .td files.

- Super-register lists are topologically ordered so no register comes
  before any of its sub-registers. When the sub-register graph is not a
  tree, independent super-registers appear in numerical order.

- Lists of overlapping registers are ordered according to register
  number.

This reverses the order of the super-regs lists, but nobody was
depending on that. The previous order of the overlaps lists was odd, and
it may have depended on the precise behavior of std::stable_sort.

The old computations are still there, but will be removed shortly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132881 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-06-12 03:05:52 +00:00
parent aff232a594
commit 026dc223ae
4 changed files with 165 additions and 58 deletions

View File

@ -434,7 +434,7 @@ public:
/// getSuperRegisters - Return the list of registers that are super-registers
/// of the specified register, or a null list of there are none. The list
/// returned is zero terminated and sorted according to super-sub register
/// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
/// relations. e.g. X86::AL's super-register list is AX, EAX, RAX.
///
const unsigned *getSuperRegisters(unsigned RegNo) const {
return get(RegNo).SuperRegs;

View File

@ -72,10 +72,21 @@ CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
CodeGenRegister *SR = RegBank.getReg(SubList[i]);
const SubRegMap &Map = SR->getSubRegs(RegBank);
// Add this as a super-register of SR now all sub-registers are in the list.
// This creates a topological ordering, the exact order depends on the
// order getSubRegs is called on all registers.
SR->SuperRegs.push_back(this);
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
++SI)
++SI) {
if (!SubRegs.insert(*SI).second)
Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));
// Noop sub-register indexes are possible, so avoid duplicates.
if (SI->second != SR)
SI->second->SuperRegs.push_back(this);
}
}
// Process the composites.
@ -128,6 +139,17 @@ CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
return SubRegs;
}
void
CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
assert(SubRegsComplete && "Must precompute sub-registers");
std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
CodeGenRegister *SR = SubRegs.find(Indices[i])->second;
if (OSet.insert(SR))
SR->addSubRegsPreOrder(OSet);
}
}
//===----------------------------------------------------------------------===//
// CodeGenRegisterClass
//===----------------------------------------------------------------------===//
@ -258,7 +280,7 @@ void CodeGenRegBank::computeComposites() {
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg1 = &Registers[i];
const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(*this);
const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
e1 = SRM1.end(); i1 != e1; ++i1) {
Record *Idx1 = i1->first;
@ -266,7 +288,7 @@ void CodeGenRegBank::computeComposites() {
// Ignore identity compositions.
if (Reg1 == Reg2)
continue;
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(*this);
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
// Try composing Idx1 with another SubRegIndex.
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
e2 = SRM2.end(); i2 != e2; ++i2) {
@ -306,6 +328,80 @@ void CodeGenRegBank::computeComposites() {
}
}
// Compute sets of overlapping registers.
//
// The standard set is all super-registers and all sub-registers, but the
// target description can add arbitrary overlapping registers via the 'Aliases'
// field. This complicates things, but we can compute overlapping sets using
// the following rules:
//
// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
//
// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
//
// Alternatively:
//
// overlap(A, B) iff there exists:
// A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
// A' = B' or A' in aliases(B') or B' in aliases(A').
//
// Here subregs(A) is the full flattened sub-register set returned by
// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
// description of register A.
//
// This also implies that registers with a common sub-register are considered
// overlapping. This can happen when forming register pairs:
//
// P0 = (R0, R1)
// P1 = (R1, R2)
// P2 = (R2, R3)
//
// In this case, we will infer an overlap between P0 and P1 because of the
// shared sub-register R1. There is no overlap between P0 and P2.
//
void CodeGenRegBank::
computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
assert(Map.empty());
// Collect overlaps that don't follow from rule 2.
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg = &Registers[i];
CodeGenRegister::Set &Overlaps = Map[Reg];
// Reg overlaps itself.
Overlaps.insert(Reg);
// All super-registers overlap.
const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
Overlaps.insert(Supers.begin(), Supers.end());
// Form symmetrical relations from the special Aliases[] lists.
std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
CodeGenRegister *Reg2 = getReg(RegList[i2]);
CodeGenRegister::Set &Overlaps2 = Map[Reg2];
const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
// Reg overlaps Reg2 which implies it overlaps supers(Reg2).
Overlaps.insert(Reg2);
Overlaps.insert(Supers2.begin(), Supers2.end());
Overlaps2.insert(Reg);
Overlaps2.insert(Supers.begin(), Supers.end());
}
}
// Apply rule 2. and inherit all sub-register overlaps.
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg = &Registers[i];
CodeGenRegister::Set &Overlaps = Map[Reg];
const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
e2 = SRM.end(); i2 != e2; ++i2) {
CodeGenRegister::Set &Overlaps2 = Map[i2->second];
Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
}
}
}
void CodeGenRegBank::computeDerivedInfo() {
computeComposites();
}

View File

@ -18,6 +18,7 @@
#include "Record.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include <cstdlib>
#include <map>
#include <string>
@ -49,9 +50,33 @@ namespace llvm {
return SubRegs;
}
// Add sub-registers to OSet following a pre-order defined by the .td file.
void addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const;
// List of super-registers in topological order, small to large.
typedef std::vector<CodeGenRegister*> SuperRegList;
// Get the list of super-registers.
// This is only valid after computeDerivedInfo has visited all registers.
const SuperRegList &getSuperRegs() const {
assert(SubRegsComplete && "Must precompute sub-registers");
return SuperRegs;
}
// Order CodeGenRegister pointers by EnumValue.
struct Less {
bool operator()(const CodeGenRegister *A, const CodeGenRegister *B) {
return A->EnumValue < B->EnumValue;
}
};
// Canonically ordered set.
typedef std::set<CodeGenRegister*, Less> Set;
private:
bool SubRegsComplete;
SubRegMap SubRegs;
SuperRegList SuperRegs;
};
@ -158,6 +183,15 @@ namespace llvm {
// Computed derived records such as missing sub-register indices.
void computeDerivedInfo();
// Compute full overlap sets for every register. These sets include the
// rarely used aliases that are neither sub nor super-registers.
//
// Map[R1].count(R2) is reflexive and symmetric, but not transitive.
//
// If R1 is a sub-register of R2, Map[R1] is a subset of Map[R2].
void computeOverlaps(std::map<const CodeGenRegister*,
CodeGenRegister::Set> &Map);
};
}

View File

@ -168,26 +168,15 @@ static void addSubSuperReg(Record *R, Record *S,
addSubSuperReg(R, *I, SubRegs, SuperRegs, Aliases);
}
class RegisterSorter {
private:
std::map<Record*, std::set<Record*>, LessRecord> &RegisterSubRegs;
public:
RegisterSorter(std::map<Record*, std::set<Record*>, LessRecord> &RS)
: RegisterSubRegs(RS) {}
bool operator()(Record *RegA, Record *RegB) {
// B is sub-register of A.
return RegisterSubRegs.count(RegA) && RegisterSubRegs[RegA].count(RegB);
}
};
// RegisterInfoEmitter::run - Main register file description emitter.
//
void RegisterInfoEmitter::run(raw_ostream &OS) {
CodeGenTarget Target(Records);
CodeGenRegBank &RegBank = Target.getRegBank();
RegBank.computeDerivedInfo();
std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps;
RegBank.computeOverlaps(Overlaps);
EmitSourceFileHeader("Register Information Source Fragment", OS);
OS << "namespace llvm {\n\n";
@ -632,60 +621,48 @@ void RegisterInfoEmitter::run(raw_ostream &OS) {
OS << "\n\n // Register Overlap Lists...\n";
// Emit an overlap list for all registers.
for (std::map<Record*, std::set<Record*>, LessRecord >::iterator
I = RegisterAliases.begin(), E = RegisterAliases.end(); I != E; ++I) {
OS << " const unsigned " << I->first->getName() << "_Overlaps[] = { "
<< getQualifiedName(I->first) << ", ";
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
OS << getQualifiedName(*ASI) << ", ";
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
const CodeGenRegister *Reg = &Regs[i];
const CodeGenRegister::Set &O = Overlaps[Reg];
// Move Reg to the front so TRI::getAliasSet can share the list.
OS << " const unsigned " << Reg->getName() << "_Overlaps[] = { "
<< getQualifiedName(Reg->TheDef) << ", ";
for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end();
I != E; ++I)
if (*I != Reg)
OS << getQualifiedName((*I)->TheDef) << ", ";
OS << "0 };\n";
}
if (!RegisterSubRegs.empty())
OS << "\n\n // Register Sub-registers Sets...\n";
// Emit the empty sub-registers list
OS << " const unsigned Empty_SubRegsSet[] = { 0 };\n";
// Loop over all of the registers which have sub-registers, emitting the
// sub-registers list to memory.
for (std::map<Record*, std::set<Record*>, LessRecord>::iterator
I = RegisterSubRegs.begin(), E = RegisterSubRegs.end(); I != E; ++I) {
if (I->second.empty())
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
const CodeGenRegister &Reg = Regs[i];
if (Reg.getSubRegs().empty())
continue;
OS << " const unsigned " << I->first->getName() << "_SubRegsSet[] = { ";
std::vector<Record*> SubRegsVector;
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
SubRegsVector.push_back(*ASI);
RegisterSorter RS(RegisterSubRegs);
std::stable_sort(SubRegsVector.begin(), SubRegsVector.end(), RS);
for (unsigned i = 0, e = SubRegsVector.size(); i != e; ++i)
OS << getQualifiedName(SubRegsVector[i]) << ", ";
// getSubRegs() orders by SubRegIndex. We want a topological order.
SetVector<CodeGenRegister*> SR;
Reg.addSubRegsPreOrder(SR);
OS << " const unsigned " << Reg.getName() << "_SubRegsSet[] = { ";
for (unsigned j = 0, je = SR.size(); j != je; ++j)
OS << getQualifiedName(SR[j]->TheDef) << ", ";
OS << "0 };\n";
}
if (!RegisterSuperRegs.empty())
OS << "\n\n // Register Super-registers Sets...\n";
// Emit the empty super-registers list
OS << " const unsigned Empty_SuperRegsSet[] = { 0 };\n";
// Loop over all of the registers which have super-registers, emitting the
// super-registers list to memory.
for (std::map<Record*, std::set<Record*>, LessRecord >::iterator
I = RegisterSuperRegs.begin(), E = RegisterSuperRegs.end(); I != E; ++I) {
if (I->second.empty())
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
const CodeGenRegister &Reg = Regs[i];
const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs();
if (SR.empty())
continue;
OS << " const unsigned " << I->first->getName() << "_SuperRegsSet[] = { ";
std::vector<Record*> SuperRegsVector;
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
SuperRegsVector.push_back(*ASI);
RegisterSorter RS(RegisterSubRegs);
std::stable_sort(SuperRegsVector.begin(), SuperRegsVector.end(), RS);
for (unsigned i = 0, e = SuperRegsVector.size(); i != e; ++i)
OS << getQualifiedName(SuperRegsVector[i]) << ", ";
OS << " const unsigned " << Reg.getName() << "_SuperRegsSet[] = { ";
for (unsigned j = 0, je = SR.size(); j != je; ++j)
OS << getQualifiedName(SR[j]->TheDef) << ", ";
OS << "0 };\n";
}
@ -698,11 +675,11 @@ void RegisterInfoEmitter::run(raw_ostream &OS) {
const CodeGenRegister &Reg = Regs[i];
OS << " { \"";
OS << Reg.getName() << "\",\t" << Reg.getName() << "_Overlaps,\t";
if (!RegisterSubRegs[Reg.TheDef].empty())
if (!Reg.getSubRegs().empty())
OS << Reg.getName() << "_SubRegsSet,\t";
else
OS << "Empty_SubRegsSet,\t";
if (!RegisterSuperRegs[Reg.TheDef].empty())
if (!Reg.getSuperRegs().empty())
OS << Reg.getName() << "_SuperRegsSet,\t";
else
OS << "Empty_SuperRegsSet,\t";