Reduce the number of #includes.

CurFrame, TraceMode, and the CachedWriter are history.
ArrayChecksEnabled and non-QuietMode are history.
The ExecutionAnnotations (SlotNumber, InstNumber, and FunctionInfo) are history.
ExecutionContext now keeps Values for each stack frame in a std::map.
Stop pre-initializing Values on the stack to 42.
Remove some dead variables, excess whitespace and commented-out code.
executeInstruction() is now part of run().
printValue() and print() are history.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9489 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Brian Gaeke 2003-10-24 19:59:01 +00:00
parent 20a277e162
commit 03e43dcfe7

View File

@ -12,13 +12,10 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "Interpreter.h" #include "Interpreter.h"
#include "ExecutionAnnotations.h" #include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h" #include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Constants.h" #include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h" #include "Support/Statistic.h"
#include <cmath> // For fmod #include <cmath> // For fmod
@ -26,41 +23,18 @@ Interpreter *TheEE = 0;
namespace { namespace {
Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
cl::opt<bool>
QuietMode("quiet", cl::desc("Do not emit any non-program output"),
cl::init(true));
cl::alias
QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));
cl::opt<bool>
ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks"));
} }
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
CachedWriter CW; // Object to accelerate printing of LLVM
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Value Manipulation code // Value Manipulation code
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
// Operations used by constant expr implementations... // Operations used by constant expr implementations...
static GenericValue executeCastOperation(Value *Src, const Type *DestTy, static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
ExecutionContext &SF); ExecutionContext &SF);
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty); const Type *Ty);
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
switch (CE->getOpcode()) { switch (CE->getOpcode()) {
@ -83,19 +57,12 @@ GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
return PTOGV(TheEE->getPointerToGlobal(GV)); return PTOGV(TheEE->getPointerToGlobal(GV));
} else { } else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value return SF.Values[V];
unsigned OpSlot = getOperandSlot(V);
assert(TyP < SF.Values.size() &&
OpSlot < SF.Values[TyP].size() && "Value out of range!");
return SF.Values[TyP][getOperandSlot(V)];
} }
} }
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value SF.Values[V] = Val;
//std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n";
SF.Values[TyP][getOperandSlot(V)] = Val;
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -242,7 +209,6 @@ static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
return Dest; return Dest;
} }
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) { const Type *Ty) {
GenericValue Dest; GenericValue Dest;
@ -263,7 +229,6 @@ static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
return Dest; return Dest;
} }
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) { const Type *Ty) {
GenericValue Dest; GenericValue Dest;
@ -284,7 +249,6 @@ static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
return Dest; return Dest;
} }
#define IMPLEMENT_SETCC(OP, TY) \ #define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
@ -465,12 +429,6 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
void Interpreter::exitCalled(GenericValue GV) { void Interpreter::exitCalled(GenericValue GV) {
if (!QuietMode) {
std::cout << "Program returned ";
print(Type::IntTy, GV);
std::cout << " via 'void exit(int)'\n";
}
ExitCode = GV.SByteVal; ExitCode = GV.SByteVal;
ECStack.clear(); ECStack.clear();
} }
@ -486,45 +444,24 @@ void Interpreter::visitReturnInst(ReturnInst &I) {
Result = getOperandValue(I.getReturnValue(), SF); Result = getOperandValue(I.getReturnValue(), SF);
} }
// Save previously executing meth
const Function *M = ECStack.back().CurFunction;
// Pop the current stack frame... this invalidates SF // Pop the current stack frame... this invalidates SF
ECStack.pop_back(); ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code... if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type? if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
if (!QuietMode) { ExitCode = Result.IntVal; // Capture the exit code of the program
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
}
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
} else { } else {
ExitCode = 0; ExitCode = 0;
} }
return; } else {
} // If we have a previous stack frame, and we have a previous call,
// fill in the return value...
// If we have a previous stack frame, and we have a previous call, fill in ExecutionContext &NewSF = ECStack.back();
// the return value... if (NewSF.Caller) {
// if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
ExecutionContext &NewSF = ECStack.back(); SetValue(NewSF.Caller, Result, NewSF);
if (NewSF.Caller) { NewSF.Caller = 0; // We returned from the call...
if (NewSF.Caller->getType() != Type::VoidTy) // Save result... }
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// This must be a function that is executing because of a user 'call'
// instruction.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
} }
} }
@ -580,8 +517,6 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
std::vector<GenericValue> ResultValues; std::vector<GenericValue> ResultValues;
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
if (Trace) CW << "Run:" << PN;
// Search for the value corresponding to this previous bb... // Search for the value corresponding to this previous bb...
int i = PN->getBasicBlockIndex(PrevBB); int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
@ -598,7 +533,6 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
SetValue(PN, ResultValues[i], SF); SetValue(PN, ResultValues[i], SF);
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Memory Instruction Implementations // Memory Instruction Implementations
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -631,7 +565,6 @@ void Interpreter::visitFreeInst(FreeInst &I) {
free(GVTOP(Value)); // Free memory free(GVTOP(Value)); // Free memory
} }
// getElementOffset - The workhorse for getelementptr. // getElementOffset - The workhorse for getelementptr.
// //
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
@ -655,22 +588,13 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
Total += SLO->MemberOffsets[Index]; Total += SLO->MemberOffsets[Index];
Ty = STy->getElementTypes()[Index]; Ty = STy->getElementTypes()[Index];
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) { } else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be long type... // Get the index number for the array... which must be long type...
assert((*I)->getType() == Type::LongTy); assert((*I)->getType() == Type::LongTy);
unsigned Idx = getOperandValue(*I, SF).LongVal; unsigned Idx = getOperandValue(*I, SF).LongVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
std::cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << *I << "\n";
abort();
}
Ty = ST->getElementType(); Ty = ST->getElementType();
unsigned Size = TD.getTypeSize(Ty); unsigned Size = TD.getTypeSize(Ty);
Total += Size*Idx; Total += Size*Idx;
} }
} }
GenericValue Result; GenericValue Result;
@ -700,8 +624,6 @@ void Interpreter::visitStoreInst(StoreInst &I) {
I.getOperand(0)->getType()); I.getOperand(0)->getType());
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations // Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -846,7 +768,6 @@ GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
return Dest; return Dest;
} }
void Interpreter::visitCastInst(CastInst &I) { void Interpreter::visitCastInst(CastInst &I) {
ExecutionContext &SF = ECStack.back(); ExecutionContext &SF = ECStack.back();
SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
@ -869,27 +790,6 @@ void Interpreter::visitVANextInst(VANextInst &I) {
// Dispatch and Execution Code // Dispatch and Execution Code
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
FunctionInfo::FunctionInfo(Function *F) {
// Assign slot numbers to the function arguments...
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
// For each instruction... Add Annote
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}
unsigned FunctionInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// callFunction - Execute the specified function... // callFunction - Execute the specified function...
// //
@ -908,17 +808,7 @@ void Interpreter::callFunction(Function *F,
if (!ECStack.empty() && ECStack.back().Caller) { if (!ECStack.empty() && ECStack.back().Caller) {
ExecutionContext &SF = ECStack.back(); ExecutionContext &SF = ECStack.back();
SetValue(SF.Caller, Result, SF); SetValue(SF.Caller, Result, SF);
SF.Caller = 0; // We returned from the call... SF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// print it.
CW << "Function " << F->getType() << " \"" << F->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
} }
} }
@ -929,8 +819,6 @@ void Interpreter::callFunction(Function *F,
// the function. Also calculate the number of values for each type slot // the function. Also calculate the number of values for each type slot
// active. // active.
// //
FunctionInfo *&FuncInfo = FunctionInfoMap[F];
if (!FuncInfo) FuncInfo = new FunctionInfo(F);
// Make a new stack frame... and fill it in. // Make a new stack frame... and fill it in.
ECStack.push_back(ExecutionContext()); ECStack.push_back(ExecutionContext());
@ -938,18 +826,6 @@ void Interpreter::callFunction(Function *F,
StackFrame.CurFunction = F; StackFrame.CurFunction = F;
StackFrame.CurBB = F->begin(); StackFrame.CurBB = F->begin();
StackFrame.CurInst = StackFrame.CurBB->begin(); StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.FuncInfo = FuncInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(FuncInfo->NumPlaneElements.size());
for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) {
StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]);
// Taint the initial values of stuff
memset(&StackFrame.Values[i][0], 42,
FuncInfo->NumPlaneElements[i]*sizeof(GenericValue));
}
// Run through the function arguments and initialize their values... // Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->asize() || assert((ArgVals.size() == F->asize() ||
@ -965,55 +841,15 @@ void Interpreter::callFunction(Function *F,
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
} }
// executeInstruction - Interpret a single instruction & increment the "PC".
//
void Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
if (Trace) CW << "Run:" << I;
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
visit(I); // Dispatch to one of the visit* methods...
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
}
void Interpreter::run() { void Interpreter::run() {
while (!ECStack.empty()) { while (!ECStack.empty()) {
// Run an instruction... // Interpret a single instruction & increment the "PC".
executeInstruction(); ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
visit(I); // Dispatch to one of the visit* methods...
} }
} }
void Interpreter::printValue(const Type *Ty, GenericValue V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID:
std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break;
case Type::UByteTyID:
std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break;
case Type::ShortTyID: std::cout << V.ShortVal; break;
case Type::UShortTyID: std::cout << V.UShortVal; break;
case Type::IntTyID: std::cout << V.IntVal; break;
case Type::UIntTyID: std::cout << V.UIntVal; break;
case Type::LongTyID: std::cout << (long)V.LongVal; break;
case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break;
case Type::FloatTyID: std::cout << V.FloatVal; break;
case Type::DoubleTyID: std::cout << V.DoubleVal; break;
case Type::PointerTyID:std::cout << (void*)GVTOP(V); break;
default:
std::cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::print(const Type *Ty, GenericValue V) {
CW << Ty << " ";
printValue(Ty, V);
}