Dramatically simplify internal DSNode representation, get implementation

*FULLY OPERATIONAL* and safe.  We are now capable of completely analyzing
at LEAST the Olden benchmarks + 181.mcf


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4562 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-11-06 06:20:27 +00:00
parent 4268c93b00
commit 08db719c4b
9 changed files with 441 additions and 593 deletions

View File

@ -23,7 +23,9 @@ class DSNodeIterator : public forward_iterator<const DSNode, ptrdiff_t> {
DSNodeIterator(const DSNode *N) : Node(N), Offset(0) {} // begin iterator
DSNodeIterator(const DSNode *N, bool) // Create end iterator
: Node(N), Offset(N->getSize()) {
: Node(N) {
Offset = (N->getSize()+((1 << DS::PointerShift)-1)) &
~((1 << DS::PointerShift)-1);
}
public:
DSNodeIterator(const DSNodeHandle &NH)
@ -41,13 +43,12 @@ public:
}
pointer operator*() const {
const DSNodeHandle *NH = Node->getLink(Offset);
return NH ? NH->getNode() : 0;
return Node->getLink(Offset).getNode();
}
pointer operator->() const { return operator*(); }
_Self& operator++() { // Preincrement
++Offset;
Offset += (1 << DS::PointerShift);
return *this;
}
_Self operator++(int) { // Postincrement

View File

@ -17,47 +17,34 @@
/// different types represented in this object.
///
class DSNode {
/// Links - Contains one entry for every _distinct_ pointer field in the
/// memory block. These are demand allocated and indexed by the MergeMap
/// vector.
///
std::vector<DSNodeHandle> Links;
/// MergeMap - Maps from every byte in the object to a signed byte number.
/// This map is neccesary due to the merging that is possible as part of the
/// unification algorithm. To merge two distinct bytes of the object together
/// into a single logical byte, the indexes for the two bytes are set to the
/// same value. This fully general merging is capable of representing all
/// manners of array merging if neccesary.
///
/// This map is also used to map outgoing pointers to various byte offsets in
/// this data structure node. If this value is >= 0, then it indicates that
/// the numbered entry in the Links vector contains the outgoing edge for this
/// byte offset. In this way, the Links vector can be demand allocated and
/// byte elements of the node may be merged without needing a Link allocated
/// for it.
///
/// Initially, each each element of the MergeMap is assigned a unique negative
/// number, which are then merged as the unification occurs.
///
std::vector<signed char> MergeMap;
/// Referrers - Keep track of all of the node handles that point to this
/// DSNode. These pointers may need to be updated to point to a different
/// node if this node gets merged with it.
///
std::vector<DSNodeHandle*> Referrers;
/// TypeEntries - As part of the merging process of this algorithm, nodes of
/// different types can be represented by this single DSNode. This vector is
/// kept sorted.
/// Links - Contains one entry for every sizeof(void*) bytes in this memory
/// object. Note that if the node is not a multiple of size(void*) bytes
/// large, that there is an extra entry for the "remainder" of the node as
/// well. For this reason, nodes of 1 byte in size do have one link.
///
std::vector<DSTypeRec> TypeEntries;
std::vector<DSNodeHandle> Links;
/// Globals - The list of global values that are merged into this node.
///
std::vector<GlobalValue*> Globals;
/// Type - Keep track of the current outer most type of this object, in
/// addition to whether or not it has been indexed like an array or not. If
/// the isArray bit is set, the node cannot grow.
///
DSTypeRec Ty;
/// Size - The current size of the node. This should be equal to the size of
/// the current type record.
///
unsigned Size;
void operator=(const DSNode &); // DO NOT IMPLEMENT
public:
enum NodeTy {
@ -99,10 +86,10 @@ public:
/// getSize - Return the maximum number of bytes occupied by this object...
///
unsigned getSize() const { return MergeMap.size(); }
unsigned getSize() const { return Size; }
// getTypeEntries - Return the possible types and their offsets in this object
const std::vector<DSTypeRec> &getTypeEntries() const { return TypeEntries; }
// getType - Return the node type of this object...
const DSTypeRec &getType() const { return Ty; }
/// getReferrers - Return a list of the pointers to this node...
///
@ -117,51 +104,46 @@ public:
bool isRead() const { return (NodeType & Read) != 0; }
/// hasLink - Return true if this memory object has a link at the specified
/// location.
/// hasLink - Return true if this memory object has a link in slot #LinkNo
///
bool hasLink(unsigned i) const {
assert(i < getSize() && "Field Link index is out of range!");
return MergeMap[i] >= 0;
bool hasLink(unsigned Offset) const {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index].getNode();
}
DSNodeHandle &getLink(unsigned Offset) {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index];
}
const DSNodeHandle &getLink(unsigned Offset) const {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index];
}
DSNodeHandle *getLink(unsigned i) {
if (hasLink(i)) {
assert((unsigned)MergeMap[i] < Links.size() &&
"MergeMap references Link that doesn't exist!");
return &Links[MergeMap[i]];
}
return 0;
}
const DSNodeHandle *getLink(unsigned i) const {
if (hasLink(i)) {
assert((unsigned)MergeMap[i] < Links.size() &&
"MergeMap references Link that doesn't exist!");
return &Links[MergeMap[i]];
}
return 0;
}
/// getMergeMapLabel - Return the merge map entry specified, to allow printing
/// out of DSNodes nicely for DOT graphs.
/// mergeTypeInfo - This method merges the specified type into the current
/// node at the specified offset. This may update the current node's type
/// record if this gives more information to the node, it may do nothing to
/// the node if this information is already known, or it may merge the node
/// completely (and return true) if the information is incompatible with what
/// is already known.
///
int getMergeMapLabel(unsigned i) const {
assert(i < MergeMap.size() && "MergeMap index out of range!");
return MergeMap[i];
}
/// getTypeRec - This method returns the specified type record if it exists.
/// If it does not yet exist, the method checks to see whether or not the
/// request would result in an untrackable state. If adding it would cause
/// untrackable state, we foldNodeCompletely the node and return the void
/// record, otherwise we add an new TypeEntry and return it.
/// This method returns true if the node is completely folded, otherwise
/// false.
///
DSTypeRec &getTypeRec(const Type *Ty, unsigned Offset);
bool mergeTypeInfo(const Type *Ty, unsigned Offset);
/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node. This node is represented as a
/// single byte with a single TypeEntry of "void".
/// single byte with a single TypeEntry of "void" with isArray = true.
///
void foldNodeCompletely();
@ -175,7 +157,13 @@ public:
/// NodeHandle, replacing what was there. It is uncommon to use this method,
/// instead one of the higher level methods should be used, below.
///
void setLink(unsigned i, const DSNodeHandle &NH);
void setLink(unsigned Offset, const DSNodeHandle &NH) {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
Links[Index] = NH;
}
/// addEdgeTo - Add an edge from the current node to the specified node. This
/// can cause merging of nodes in the graph.
@ -191,18 +179,6 @@ public:
///
void mergeWith(const DSNodeHandle &NH, unsigned Offset);
/// mergeIndexes - If we discover that two indexes are equivalent and must be
/// merged, this function is used to do the dirty work.
///
void mergeIndexes(unsigned idx1, unsigned idx2) {
assert(idx1 < getSize() && idx2 < getSize() && "Indexes out of range!");
signed char MV1 = MergeMap[idx1];
signed char MV2 = MergeMap[idx2];
if (MV1 != MV2)
mergeMappedValues(MV1, MV2);
}
/// addGlobal - Add an entry for a global value to the Globals list. This
/// also marks the node with the 'G' flag if it does not already have it.
///
@ -226,34 +202,6 @@ private:
// addReferrer - Keep the referrer set up to date...
void addReferrer(DSNodeHandle *H) { Referrers.push_back(H); }
void removeReferrer(DSNodeHandle *H);
/// rewriteMergeMap - Loop over the mergemap, replacing any references to the
/// index From to be references to the index To.
///
void rewriteMergeMap(signed char From, signed char To) {
assert(From != To && "Cannot change something into itself!");
assert(To < (int)Links.size() &&
"Changing MergeMap entry to an illegal entry!");
for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
if (MergeMap[i] == From)
MergeMap[i] = To;
}
/// mergeMappedValues - This is the higher level form of rewriteMergeMap. It
/// is fully capable of merging links together if neccesary as well as simply
/// rewriting the map entries.
///
void mergeMappedValues(signed char V1, signed char V2);
/// growNode - Attempt to grow the node to the specified size. This may do
/// one of three things:
/// 1. Grow the node, return false
/// 2. Refuse to grow the node, but maintain a trackable situation, return
/// false.
/// 3. Be unable to track if node was that size, so collapse the node and
/// return true.
///
bool growNode(unsigned RequestedSize);
};
@ -276,26 +224,26 @@ inline bool DSNodeHandle::hasLink(unsigned Num) const {
/// getLink - Treat this current node pointer as a pointer to a structure of
/// some sort. This method will return the pointer a mem[this+Num]
///
inline const DSNodeHandle *DSNodeHandle::getLink(unsigned Num) const {
inline const DSNodeHandle &DSNodeHandle::getLink(unsigned Off) const {
assert(N && "DSNodeHandle does not point to a node yet!");
return N->getLink(Num+Offset);
return N->getLink(Offset+Off);
}
inline DSNodeHandle *DSNodeHandle::getLink(unsigned Num) {
inline DSNodeHandle &DSNodeHandle::getLink(unsigned Off) {
assert(N && "DSNodeHandle does not point to a node yet!");
return N->getLink(Num+Offset);
return N->getLink(Off+Offset);
}
inline void DSNodeHandle::setLink(unsigned Num, const DSNodeHandle &NH) {
inline void DSNodeHandle::setLink(unsigned Off, const DSNodeHandle &NH) {
assert(N && "DSNodeHandle does not point to a node yet!");
N->setLink(Num+Offset, NH);
N->setLink(Off+Offset, NH);
}
/// addEdgeTo - Add an edge from the current node to the specified node. This
/// can cause merging of nodes in the graph.
///
inline void DSNodeHandle::addEdgeTo(unsigned LinkNo, const DSNodeHandle &Node) {
inline void DSNodeHandle::addEdgeTo(unsigned Off, const DSNodeHandle &Node) {
assert(N && "DSNodeHandle does not point to a node yet!");
N->addEdgeTo(LinkNo+Offset, Node);
N->addEdgeTo(Off+Offset, Node);
}
/// mergeWith - Merge the logical node pointed to by 'this' with the node
@ -304,9 +252,8 @@ inline void DSNodeHandle::addEdgeTo(unsigned LinkNo, const DSNodeHandle &Node) {
inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) {
if (N != 0)
N->mergeWith(Node, Offset);
else { // No node to merge with, so just point to Node
else // No node to merge with, so just point to Node
*this = Node;
}
}
#endif

View File

@ -22,6 +22,10 @@ class DSNode; // Each node in the graph
class DSGraph; // A graph for a function
class DSNodeIterator; // Data structure graph traversal iterator
namespace DS {
extern const unsigned PointerShift; // 64bit ptrs = 3, 32 bit ptrs = 2
};
//===----------------------------------------------------------------------===//
/// DSNodeHandle - Implement a "handle" to a data structure node that takes care
/// of all of the add/un'refing of the node to prevent the backpointers in the
@ -32,6 +36,7 @@ class DSNodeIterator; // Data structure graph traversal iterator
/// defined in DSNode.h because they need knowledge of DSNode operation. Putting
/// them in a CPP file wouldn't help making them inlined and keeping DSNode and
/// DSNodeHandle (and friends) in one file complicates things.
///
class DSNodeHandle {
DSNode *N;
unsigned Offset;
@ -77,8 +82,8 @@ public:
/// getLink - Treat this current node pointer as a pointer to a structure of
/// some sort. This method will return the pointer a mem[this+Num]
///
inline const DSNodeHandle *getLink(unsigned Num) const;
inline DSNodeHandle *getLink(unsigned Num);
inline const DSNodeHandle &getLink(unsigned Num) const;
inline DSNodeHandle &getLink(unsigned Num);
inline void setLink(unsigned Num, const DSNodeHandle &NH);
};
@ -90,26 +95,14 @@ public:
///
struct DSTypeRec {
const Type *Ty; // The type itself...
unsigned Offset; // The offset in the node
bool isArray; // Have we accessed an array of elements?
DSTypeRec() : Ty(0), Offset(0), isArray(false) {}
DSTypeRec(const Type *T, unsigned O) : Ty(T), Offset(O), isArray(false) {}
bool operator<(const DSTypeRec &TR) const {
// Sort first by offset!
return Offset < TR.Offset || (Offset == TR.Offset && Ty < TR.Ty);
}
bool operator==(const DSTypeRec &TR) const {
return Ty == TR.Ty && Offset == TR.Offset;
}
bool operator!=(const DSTypeRec &TR) const { return !operator==(TR); }
DSTypeRec(const Type *T = 0, bool A = false)
: Ty(T), isArray(A) {}
};
//===----------------------------------------------------------------------===//
/// DSCallSite - Representation of a call site via its call instruction,
/// the DSNode handle for the callee function (or function pointer), and

View File

@ -23,7 +23,9 @@ class DSNodeIterator : public forward_iterator<const DSNode, ptrdiff_t> {
DSNodeIterator(const DSNode *N) : Node(N), Offset(0) {} // begin iterator
DSNodeIterator(const DSNode *N, bool) // Create end iterator
: Node(N), Offset(N->getSize()) {
: Node(N) {
Offset = (N->getSize()+((1 << DS::PointerShift)-1)) &
~((1 << DS::PointerShift)-1);
}
public:
DSNodeIterator(const DSNodeHandle &NH)
@ -41,13 +43,12 @@ public:
}
pointer operator*() const {
const DSNodeHandle *NH = Node->getLink(Offset);
return NH ? NH->getNode() : 0;
return Node->getLink(Offset).getNode();
}
pointer operator->() const { return operator*(); }
_Self& operator++() { // Preincrement
++Offset;
Offset += (1 << DS::PointerShift);
return *this;
}
_Self operator++(int) { // Postincrement

View File

@ -17,47 +17,34 @@
/// different types represented in this object.
///
class DSNode {
/// Links - Contains one entry for every _distinct_ pointer field in the
/// memory block. These are demand allocated and indexed by the MergeMap
/// vector.
///
std::vector<DSNodeHandle> Links;
/// MergeMap - Maps from every byte in the object to a signed byte number.
/// This map is neccesary due to the merging that is possible as part of the
/// unification algorithm. To merge two distinct bytes of the object together
/// into a single logical byte, the indexes for the two bytes are set to the
/// same value. This fully general merging is capable of representing all
/// manners of array merging if neccesary.
///
/// This map is also used to map outgoing pointers to various byte offsets in
/// this data structure node. If this value is >= 0, then it indicates that
/// the numbered entry in the Links vector contains the outgoing edge for this
/// byte offset. In this way, the Links vector can be demand allocated and
/// byte elements of the node may be merged without needing a Link allocated
/// for it.
///
/// Initially, each each element of the MergeMap is assigned a unique negative
/// number, which are then merged as the unification occurs.
///
std::vector<signed char> MergeMap;
/// Referrers - Keep track of all of the node handles that point to this
/// DSNode. These pointers may need to be updated to point to a different
/// node if this node gets merged with it.
///
std::vector<DSNodeHandle*> Referrers;
/// TypeEntries - As part of the merging process of this algorithm, nodes of
/// different types can be represented by this single DSNode. This vector is
/// kept sorted.
/// Links - Contains one entry for every sizeof(void*) bytes in this memory
/// object. Note that if the node is not a multiple of size(void*) bytes
/// large, that there is an extra entry for the "remainder" of the node as
/// well. For this reason, nodes of 1 byte in size do have one link.
///
std::vector<DSTypeRec> TypeEntries;
std::vector<DSNodeHandle> Links;
/// Globals - The list of global values that are merged into this node.
///
std::vector<GlobalValue*> Globals;
/// Type - Keep track of the current outer most type of this object, in
/// addition to whether or not it has been indexed like an array or not. If
/// the isArray bit is set, the node cannot grow.
///
DSTypeRec Ty;
/// Size - The current size of the node. This should be equal to the size of
/// the current type record.
///
unsigned Size;
void operator=(const DSNode &); // DO NOT IMPLEMENT
public:
enum NodeTy {
@ -99,10 +86,10 @@ public:
/// getSize - Return the maximum number of bytes occupied by this object...
///
unsigned getSize() const { return MergeMap.size(); }
unsigned getSize() const { return Size; }
// getTypeEntries - Return the possible types and their offsets in this object
const std::vector<DSTypeRec> &getTypeEntries() const { return TypeEntries; }
// getType - Return the node type of this object...
const DSTypeRec &getType() const { return Ty; }
/// getReferrers - Return a list of the pointers to this node...
///
@ -117,51 +104,46 @@ public:
bool isRead() const { return (NodeType & Read) != 0; }
/// hasLink - Return true if this memory object has a link at the specified
/// location.
/// hasLink - Return true if this memory object has a link in slot #LinkNo
///
bool hasLink(unsigned i) const {
assert(i < getSize() && "Field Link index is out of range!");
return MergeMap[i] >= 0;
bool hasLink(unsigned Offset) const {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index].getNode();
}
DSNodeHandle &getLink(unsigned Offset) {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index];
}
const DSNodeHandle &getLink(unsigned Offset) const {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
return Links[Index];
}
DSNodeHandle *getLink(unsigned i) {
if (hasLink(i)) {
assert((unsigned)MergeMap[i] < Links.size() &&
"MergeMap references Link that doesn't exist!");
return &Links[MergeMap[i]];
}
return 0;
}
const DSNodeHandle *getLink(unsigned i) const {
if (hasLink(i)) {
assert((unsigned)MergeMap[i] < Links.size() &&
"MergeMap references Link that doesn't exist!");
return &Links[MergeMap[i]];
}
return 0;
}
/// getMergeMapLabel - Return the merge map entry specified, to allow printing
/// out of DSNodes nicely for DOT graphs.
/// mergeTypeInfo - This method merges the specified type into the current
/// node at the specified offset. This may update the current node's type
/// record if this gives more information to the node, it may do nothing to
/// the node if this information is already known, or it may merge the node
/// completely (and return true) if the information is incompatible with what
/// is already known.
///
int getMergeMapLabel(unsigned i) const {
assert(i < MergeMap.size() && "MergeMap index out of range!");
return MergeMap[i];
}
/// getTypeRec - This method returns the specified type record if it exists.
/// If it does not yet exist, the method checks to see whether or not the
/// request would result in an untrackable state. If adding it would cause
/// untrackable state, we foldNodeCompletely the node and return the void
/// record, otherwise we add an new TypeEntry and return it.
/// This method returns true if the node is completely folded, otherwise
/// false.
///
DSTypeRec &getTypeRec(const Type *Ty, unsigned Offset);
bool mergeTypeInfo(const Type *Ty, unsigned Offset);
/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node. This node is represented as a
/// single byte with a single TypeEntry of "void".
/// single byte with a single TypeEntry of "void" with isArray = true.
///
void foldNodeCompletely();
@ -175,7 +157,13 @@ public:
/// NodeHandle, replacing what was there. It is uncommon to use this method,
/// instead one of the higher level methods should be used, below.
///
void setLink(unsigned i, const DSNodeHandle &NH);
void setLink(unsigned Offset, const DSNodeHandle &NH) {
assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
"Pointer offset not aligned correctly!");
unsigned Index = Offset >> DS::PointerShift;
assert(Index < Links.size() && "Link index is out of range!");
Links[Index] = NH;
}
/// addEdgeTo - Add an edge from the current node to the specified node. This
/// can cause merging of nodes in the graph.
@ -191,18 +179,6 @@ public:
///
void mergeWith(const DSNodeHandle &NH, unsigned Offset);
/// mergeIndexes - If we discover that two indexes are equivalent and must be
/// merged, this function is used to do the dirty work.
///
void mergeIndexes(unsigned idx1, unsigned idx2) {
assert(idx1 < getSize() && idx2 < getSize() && "Indexes out of range!");
signed char MV1 = MergeMap[idx1];
signed char MV2 = MergeMap[idx2];
if (MV1 != MV2)
mergeMappedValues(MV1, MV2);
}
/// addGlobal - Add an entry for a global value to the Globals list. This
/// also marks the node with the 'G' flag if it does not already have it.
///
@ -226,34 +202,6 @@ private:
// addReferrer - Keep the referrer set up to date...
void addReferrer(DSNodeHandle *H) { Referrers.push_back(H); }
void removeReferrer(DSNodeHandle *H);
/// rewriteMergeMap - Loop over the mergemap, replacing any references to the
/// index From to be references to the index To.
///
void rewriteMergeMap(signed char From, signed char To) {
assert(From != To && "Cannot change something into itself!");
assert(To < (int)Links.size() &&
"Changing MergeMap entry to an illegal entry!");
for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
if (MergeMap[i] == From)
MergeMap[i] = To;
}
/// mergeMappedValues - This is the higher level form of rewriteMergeMap. It
/// is fully capable of merging links together if neccesary as well as simply
/// rewriting the map entries.
///
void mergeMappedValues(signed char V1, signed char V2);
/// growNode - Attempt to grow the node to the specified size. This may do
/// one of three things:
/// 1. Grow the node, return false
/// 2. Refuse to grow the node, but maintain a trackable situation, return
/// false.
/// 3. Be unable to track if node was that size, so collapse the node and
/// return true.
///
bool growNode(unsigned RequestedSize);
};
@ -276,26 +224,26 @@ inline bool DSNodeHandle::hasLink(unsigned Num) const {
/// getLink - Treat this current node pointer as a pointer to a structure of
/// some sort. This method will return the pointer a mem[this+Num]
///
inline const DSNodeHandle *DSNodeHandle::getLink(unsigned Num) const {
inline const DSNodeHandle &DSNodeHandle::getLink(unsigned Off) const {
assert(N && "DSNodeHandle does not point to a node yet!");
return N->getLink(Num+Offset);
return N->getLink(Offset+Off);
}
inline DSNodeHandle *DSNodeHandle::getLink(unsigned Num) {
inline DSNodeHandle &DSNodeHandle::getLink(unsigned Off) {
assert(N && "DSNodeHandle does not point to a node yet!");
return N->getLink(Num+Offset);
return N->getLink(Off+Offset);
}
inline void DSNodeHandle::setLink(unsigned Num, const DSNodeHandle &NH) {
inline void DSNodeHandle::setLink(unsigned Off, const DSNodeHandle &NH) {
assert(N && "DSNodeHandle does not point to a node yet!");
N->setLink(Num+Offset, NH);
N->setLink(Off+Offset, NH);
}
/// addEdgeTo - Add an edge from the current node to the specified node. This
/// can cause merging of nodes in the graph.
///
inline void DSNodeHandle::addEdgeTo(unsigned LinkNo, const DSNodeHandle &Node) {
inline void DSNodeHandle::addEdgeTo(unsigned Off, const DSNodeHandle &Node) {
assert(N && "DSNodeHandle does not point to a node yet!");
N->addEdgeTo(LinkNo+Offset, Node);
N->addEdgeTo(Off+Offset, Node);
}
/// mergeWith - Merge the logical node pointed to by 'this' with the node
@ -304,9 +252,8 @@ inline void DSNodeHandle::addEdgeTo(unsigned LinkNo, const DSNodeHandle &Node) {
inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) {
if (N != 0)
N->mergeWith(Node, Offset);
else { // No node to merge with, so just point to Node
else // No node to merge with, so just point to Node
*this = Node;
}
}
#endif

View File

@ -22,6 +22,10 @@ class DSNode; // Each node in the graph
class DSGraph; // A graph for a function
class DSNodeIterator; // Data structure graph traversal iterator
namespace DS {
extern const unsigned PointerShift; // 64bit ptrs = 3, 32 bit ptrs = 2
};
//===----------------------------------------------------------------------===//
/// DSNodeHandle - Implement a "handle" to a data structure node that takes care
/// of all of the add/un'refing of the node to prevent the backpointers in the
@ -32,6 +36,7 @@ class DSNodeIterator; // Data structure graph traversal iterator
/// defined in DSNode.h because they need knowledge of DSNode operation. Putting
/// them in a CPP file wouldn't help making them inlined and keeping DSNode and
/// DSNodeHandle (and friends) in one file complicates things.
///
class DSNodeHandle {
DSNode *N;
unsigned Offset;
@ -77,8 +82,8 @@ public:
/// getLink - Treat this current node pointer as a pointer to a structure of
/// some sort. This method will return the pointer a mem[this+Num]
///
inline const DSNodeHandle *getLink(unsigned Num) const;
inline DSNodeHandle *getLink(unsigned Num);
inline const DSNodeHandle &getLink(unsigned Num) const;
inline DSNodeHandle &getLink(unsigned Num);
inline void setLink(unsigned Num, const DSNodeHandle &NH);
};
@ -90,26 +95,14 @@ public:
///
struct DSTypeRec {
const Type *Ty; // The type itself...
unsigned Offset; // The offset in the node
bool isArray; // Have we accessed an array of elements?
DSTypeRec() : Ty(0), Offset(0), isArray(false) {}
DSTypeRec(const Type *T, unsigned O) : Ty(T), Offset(O), isArray(false) {}
bool operator<(const DSTypeRec &TR) const {
// Sort first by offset!
return Offset < TR.Offset || (Offset == TR.Offset && Ty < TR.Ty);
}
bool operator==(const DSTypeRec &TR) const {
return Ty == TR.Ty && Offset == TR.Offset;
}
bool operator!=(const DSTypeRec &TR) const { return !operator==(TR); }
DSTypeRec(const Type *T = 0, bool A = false)
: Ty(T), isArray(A) {}
};
//===----------------------------------------------------------------------===//
/// DSCallSite - Representation of a call site via its call instruction,
/// the DSNode handle for the callee function (or function pointer), and

View File

@ -16,6 +16,15 @@
using std::vector;
namespace {
Statistic<> NumFolds("dsnode", "Number of nodes completely folded");
};
namespace DS {
const unsigned PointerShift = 3; // 64bit ptrs = 3, 32 bit ptrs = 2
const unsigned PointerSize = 1 << PointerShift;
};
namespace DataStructureAnalysis { // TODO: FIXME
// isPointerType - Return true if this first class type is big enough to hold
// a pointer.
@ -29,15 +38,16 @@ using namespace DataStructureAnalysis;
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
DSNode::DSNode(enum NodeTy NT, const Type *T)
: Ty(Type::VoidTy), Size(0), NodeType(NT) {
// Add the type entry if it is specified...
if (T) getTypeRec(T, 0);
if (T) mergeTypeInfo(T, 0);
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Links(N.Links), MergeMap(N.MergeMap),
TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
: Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size),
NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
@ -70,232 +80,237 @@ void DSNode::addGlobal(GlobalValue *GV) {
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
// We are no longer typed at all...
TypeEntries.clear();
TypeEntries.push_back(DSTypeRec(Type::VoidTy, 0));
if (isNodeCompletelyFolded()) return;
// Loop over all of our referrers, making them point to our one byte of space.
++NumFolds;
// We are no longer typed at all...
Ty = DSTypeRec(Type::VoidTy, true);
Size = 1;
// Loop over all of our referrers, making them point to our zero bytes of
// space.
for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end();
I != E; ++I)
(*I)->setOffset(0);
// Fold the MergeMap down to a single byte of space...
MergeMap.resize(1);
// If we have links, merge all of our outgoing links together...
if (!Links.empty()) {
MergeMap[0] = 0; // We now contain an outgoing edge...
for (unsigned i = 1, e = Links.size(); i != e; ++i)
for (unsigned i = 1, e = Links.size(); i < e; ++i)
Links[0].mergeWith(Links[i]);
Links.resize(1);
} else {
MergeMap[0] = -1;
}
}
/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
return getSize() == 1 && TypeEntries.size() == 1 &&
TypeEntries[0].Ty == Type::VoidTy;
return getSize() == 1 && Ty.Ty == Type::VoidTy && Ty.isArray;
}
/// setLink - Set the link at the specified offset to the specified
/// NodeHandle, replacing what was there. It is uncommon to use this method,
/// instead one of the higher level methods should be used, below.
/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset. This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
void DSNode::setLink(unsigned i, const DSNodeHandle &NH) {
// Create a new entry in the Links vector to hold a new element for offset.
if (!hasLink(i)) {
signed char NewIdx = Links.size();
// Check to see if we allocate more than 128 distinct links for this node.
// If so, just merge with the last one. This really shouldn't ever happen,
// but it should work regardless of whether it does or not.
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) {
// Check to make sure the Size member is up-to-date. Size can be one of the
// following:
// Size = 0, Ty = Void: Nothing is known about this node.
// Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
// Size = 1, Ty = Void, Array = 1: The node is collapsed
// Otherwise, sizeof(Ty) = Size
//
if (NewIdx >= 0) {
Links.push_back(NH); // Allocate space: common case
} else { // Wrap around? Too many links?
NewIdx--; // Merge with whatever happened last
assert(NewIdx > 0 && "Should wrap back around");
std::cerr << "\n*** DSNode found that requires more than 128 "
<< "active links at once!\n\n";
assert(((Size == 0 && Ty.Ty == Type::VoidTy && !Ty.isArray) ||
(Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
(Size == 1 && Ty.Ty == Type::VoidTy && Ty.isArray) ||
(Size == 0 && !Ty.Ty->isSized() && !Ty.isArray) ||
(TD.getTypeSize(Ty.Ty) == Size)) &&
"Size member of DSNode doesn't match the type structure!");
assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
if (Offset == 0 && NewTy == Ty.Ty)
return false; // This should be a common case, handle it efficiently
// Return true immediately if the node is completely folded.
if (isNodeCompletelyFolded()) return true;
// Figure out how big the new type we're merging in is...
unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
// Otherwise check to see if we can fold this type into the current node. If
// we can't, we fold the node completely, if we can, we potentially update our
// internal state.
//
if (Ty.Ty == Type::VoidTy) {
// If this is the first type that this node has seen, just accept it without
// question....
assert(Offset == 0 && "Cannot have an offset into a void node!");
assert(Ty.isArray == false && "This shouldn't happen!");
Ty.Ty = NewTy;
Size = NewTySize;
// Calculate the number of outgoing links from this node.
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
return false;
}
signed char OldIdx = MergeMap[i];
assert (OldIdx < 0 && "Shouldn't contain link!");
// Make sure that anything aliasing this field gets updated to point to the
// new link field.
rewriteMergeMap(OldIdx, NewIdx);
assert(MergeMap[i] == NewIdx && "Field not replaced!");
} else {
assert(MergeMap[i] < (int)Links.size() && "MergeMap index out of range!");
Links[MergeMap[i]] = NH;
// Handle node expansion case here...
if (Offset+NewTySize > Size) {
// It is illegal to grow this node if we have treated it as an array of
// objects...
if (Ty.isArray) {
foldNodeCompletely();
return true;
}
if (Offset) { // We could handle this case, but we don't for now...
std::cerr << "UNIMP: Trying to merge a growth type into offset != 0: "
<< "Collapsing!\n";
foldNodeCompletely();
return true;
}
// Okay, the situation is nice and simple, we are trying to merge a type in
// at offset 0 that is bigger than our current type. Implement this by
// switching to the new type and then merge in the smaller one, which should
// hit the other code path here. If the other code path decides it's not
// ok, it will collapse the node as appropriate.
//
const Type *OldTy = Ty.Ty;
Ty.Ty = NewTy;
Size = NewTySize;
// Must grow links to be the appropriate size...
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
// Merge in the old type now... which is guaranteed to be smaller than the
// "current" type.
return mergeTypeInfo(OldTy, 0);
}
assert(Offset < Size &&
"Cannot merge something into a part of our type that doesn't exist!");
// Find the section of Ty.Ty that NewTy overlaps with... first we find the
// type that starts at offset Offset.
//
unsigned O = 0;
const Type *SubType = Ty.Ty;
while (O < Offset) {
assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
switch (SubType->getPrimitiveID()) {
case Type::StructTyID: {
const StructType *STy = cast<StructType>(SubType);
const StructLayout &SL = *TD.getStructLayout(STy);
unsigned i = 0, e = SL.MemberOffsets.size();
for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
/* empty */;
// The offset we are looking for must be in the i'th element...
SubType = STy->getElementTypes()[i];
O += SL.MemberOffsets[i];
break;
}
case Type::ArrayTyID: {
SubType = cast<ArrayType>(SubType)->getElementType();
unsigned ElSize = TD.getTypeSize(SubType);
unsigned Remainder = (Offset-O) % ElSize;
O = Offset-Remainder;
break;
}
default:
assert(0 && "Unknown type!");
}
}
assert(O == Offset && "Could not achieve the correct offset!");
// If we found our type exactly, early exit
if (SubType == NewTy) return false;
// Okay, so we found the leader type at the offset requested. Search the list
// of types that starts at this offset. If SubType is currently an array or
// structure, the type desired may actually be the first element of the
// composite type...
//
unsigned SubTypeSize = TD.getTypeSize(SubType);
while (SubType != NewTy) {
const Type *NextSubType = 0;
unsigned NextSubTypeSize;
switch (SubType->getPrimitiveID()) {
case Type::StructTyID:
NextSubType = cast<StructType>(SubType)->getElementTypes()[0];
NextSubTypeSize = TD.getTypeSize(SubType);
break;
case Type::ArrayTyID:
NextSubType = cast<ArrayType>(SubType)->getElementType();
NextSubTypeSize = TD.getTypeSize(SubType);
break;
default: ;
// fall out
}
if (NextSubType == 0)
break; // In the default case, break out of the loop
if (NextSubTypeSize < NewTySize)
break; // Don't allow shrinking to a smaller type than NewTySize
SubType = NextSubType;
SubTypeSize = NextSubTypeSize;
}
// If we found the type exactly, return it...
if (SubType == NewTy)
return false;
// Check to see if we have a compatible, but different type...
if (NewTySize == SubTypeSize) {
// Check to see if this type is obviously convertable... int -> uint f.e.
if (NewTy->isLosslesslyConvertableTo(SubType))
return false;
// Check to see if we have a pointer & integer mismatch going on here,
// loading a pointer as a long, for example.
//
if (SubType->isInteger() && isa<PointerType>(NewTy) ||
NewTy->isInteger() && isa<PointerType>(SubType))
return false;
}
std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty.Ty
<< "\n due to:" << NewTy << " @ " << Offset << "!\n";
std::cerr << "SubType: " << SubType << "\n\n";
foldNodeCompletely();
return true;
}
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
assert(Offset < getSize() && "Offset out of range!");
if (NH.getNode() == 0) return; // Nothing to do
if (DSNodeHandle *ExistingNH = getLink(Offset)) {
DSNodeHandle &ExistingEdge = getLink(Offset);
if (ExistingEdge.getNode()) {
// Merge the two nodes...
ExistingNH->mergeWith(NH);
ExistingEdge.mergeWith(NH);
} else { // No merging to perform...
setLink(Offset, NH); // Just force a link in there...
}
}
/// getTypeRec - This method returns the specified type record if it exists.
/// If it does not yet exist, the method checks to see whether or not the
/// request would result in an untrackable state. If adding it would cause
/// untrackable state, we foldNodeCompletely the node and return the void
/// record, otherwise we add an new TypeEntry and return it.
///
DSTypeRec &DSNode::getTypeRec(const Type *Ty, unsigned Offset) {
// If the node is already collapsed, we can't do anything... bail out early
if (isNodeCompletelyFolded()) {
assert(TypeEntries.size() == 1 && "Node folded and Entries.size() != 1?");
return TypeEntries[0];
}
// First search to see if we already have a record for this...
DSTypeRec SearchFor(Ty, Offset);
std::vector<DSTypeRec>::iterator I;
if (TypeEntries.size() < 5) { // Linear search if we have few entries.
I = TypeEntries.begin();
while (I != TypeEntries.end() && *I < SearchFor)
++I;
} else {
I = std::lower_bound(TypeEntries.begin(), TypeEntries.end(), SearchFor);
}
// At this point, I either points to the right entry or it points to the entry
// we are to insert the new entry in front of...
//
if (I != TypeEntries.end() && *I == SearchFor)
return *I;
// ASSUME that it's okay to add this type entry.
// FIXME: This should check to make sure it's ok.
// If the data size is different then our current size, try to resize the node
unsigned ReqSize = Ty->isSized() ? TD.getTypeSize(Ty) : 0;
if (getSize() < ReqSize) {
// If we are trying to make it bigger, and we can grow the node, do so.
if (growNode(ReqSize)) {
assert(isNodeCompletelyFolded() && "Node isn't folded?");
return TypeEntries[0];
}
} else if (getSize() > ReqSize) {
// If we are trying to make the node smaller, we don't have to do anything.
}
return *TypeEntries.insert(I, SearchFor);
}
/// growNode - Attempt to grow the node to the specified size. This may do one
/// of three things:
/// 1. Grow the node, return false
/// 2. Refuse to grow the node, but maintain a trackable situation, return
/// false.
/// 3. Be unable to track if node was that size, so collapse the node and
/// return true.
///
bool DSNode::growNode(unsigned ReqSize) {
unsigned OldSize = getSize();
if (0) {
// FIXME: DSNode::growNode() doesn't perform correct safety checks yet!
foldNodeCompletely();
return true;
}
assert(ReqSize > OldSize && "Not growing node!");
// Resize the merge map to have enough space...
MergeMap.resize(ReqSize);
// Assign unique values to all of the elements of MergeMap
if (ReqSize < 128) {
// Handle the common case of reasonable size structures...
for (unsigned i = OldSize; i != ReqSize; ++i)
MergeMap[i] = -1-i; // Assign -1, -2, -3, ...
} else {
// It's possible that we have something really big here. In this case,
// divide the object into chunks until it will fit into 128 elements.
unsigned Multiple = ReqSize/128;
// It's probably an array, and probably some power of two in size.
// Because of this, find the biggest power of two that is bigger than
// multiple to use as our real Multiple.
unsigned RealMultiple = 2;
while (RealMultiple <= Multiple) RealMultiple <<= 1;
unsigned RealBound = ReqSize/RealMultiple;
assert(RealBound <= 128 && "Math didn't work out right");
// Now go through and assign indexes that are between -1 and -128
// inclusive
//
for (unsigned i = OldSize; i != ReqSize; ++i)
MergeMap[i] = -1-(i % RealBound); // Assign -1, -2, -3...
}
return false;
}
/// mergeMappedValues - This is the higher level form of rewriteMergeMap. It is
/// fully capable of merging links together if neccesary as well as simply
/// rewriting the map entries.
///
void DSNode::mergeMappedValues(signed char V1, signed char V2) {
assert(V1 != V2 && "Cannot merge two identical mapped values!");
assert(V2 < (int)Links.size() &&
"Attempting to rewrite to invalid link number!");
assert(V1 < (int)Links.size() &&
"Attempting to rewrite to invalid link number!");
if (V1 < 0) { // If there is no outgoing link from V1, merge it with V2
if (V2 < 0 && V1 > V2)
// If both are not linked, merge to the field closer to 0
rewriteMergeMap(V2, V1);
else
rewriteMergeMap(V1, V2);
} else if (V2 < 0) { // Is V2 < 0 && V1 >= 0?
rewriteMergeMap(V2, V1); // Merge into the one with the link...
} else { // Otherwise, links exist at both locations
// Merge the V2 link into V1 so that we reduce the overall value of the
// links are reduced...
//
if (V2 < V1) std::swap(V1, V2); // Ensure V1 < V2
rewriteMergeMap(V2, V1); // After this, V2 is "dead"
// Merge Links[V1] with Links[V2] so they point to the same place now...
Links[V1].mergeWith(Links[V2]); // BROKEN, this can invalidate V2!!
// Change the user of the last link to use V2 instead
if ((unsigned)V2 != Links.size()-1) {
rewriteMergeMap(Links.size()-1, V2); // Point to V2 instead of last el...
// Make sure V2 points the right DSNode
Links[V2] = Links.back();
}
// Reduce the number of distinct outgoing links...
Links.pop_back();
}
}
// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted. This assumes that 'T's are
@ -354,11 +369,17 @@ void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
return; // Noop
if (N == this) {
std::cerr << "WARNING: Cannot merge two portions of the same node yet, so we collapse instead!\n";
N->foldNodeCompletely();
// We cannot merge two pieces of the same node together, collapse the node
// completely.
std::cerr << "Attempting to merge two chunks of the same node together!\n";
foldNodeCompletely();
return;
}
// Merge the type entries of the two nodes together...
if (N->Ty.Ty != Type::VoidTy)
mergeTypeInfo(N->Ty.Ty, Offset);
// If we are merging a node with a completely folded node, then both nodes are
// now completely folded.
//
@ -396,15 +417,6 @@ void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
// respect to NH.Offset) is now zero.
//
unsigned NOffset = NH.getOffset()-Offset;
// If our destination node is too small... try to grow it.
if (N->getSize()+NOffset > getSize() &&
growNode(N->getSize()+NOffset)) {
// Catastrophic failure occured and we had to collapse the node. In this
// case, collapse the other node as well.
N->foldNodeCompletely();
NOffset = 0;
}
unsigned NSize = N->getSize();
// Remove all edges pointing at N, causing them to point to 'this' instead.
@ -418,71 +430,29 @@ void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
// Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging!
//
for (unsigned i = 0, e = NSize; i != e; ++i)
if (DSNodeHandle *Link = N->getLink(i)) {
addEdgeTo((i+NOffset) % getSize(), *Link);
N->MergeMap[i] = -1; // Kill outgoing edge
}
for (unsigned i = 0; i < NSize; i += DS::PointerSize) {
DSNodeHandle &Link = N->getLink(i);
if (Link.getNode()) {
addEdgeTo((i+NOffset) % getSize(), Link);
#if 0
// We must merge fields in this node due to nodes merged in the source node.
// In order to handle this we build a map that converts from the source node's
// MergeMap values to our MergeMap values. This map is indexed by the
// expression: MergeMap[SMM+SourceNodeSize] so we need to allocate at least
// 2*SourceNodeSize elements of space for the mapping. We can do this because
// we know that there are at most SourceNodeSize outgoing links in the node
// (thus that many positive values) and at most SourceNodeSize distinct fields
// (thus that many negative values).
// It's possible that after adding the new edge that some recursive
// merging just occured, causing THIS node to get merged into oblivion.
// If that happens, we must not try to merge any more edges into it!
//
std::vector<signed char> MergeMapMap(NSize*2, 127);
// Loop through the structures, merging them together...
for (unsigned i = 0, e = NSize; i != e; ++i) {
// Get what this byte of N maps to...
signed char NElement = N->MergeMap[i];
// Get what we map this byte to...
signed char Element = MergeMap[i+NOffset];
assert(Element < (int)Links.size() && "Element in merge map out of range!");
// We use 127 as a sentinal and don't check for it's existence yet...
assert(Element != 127 && "MergeMapMap doesn't permit 127 values yet!");
signed char CurMappedVal = MergeMapMap[NElement+NSize];
if (CurMappedVal == 127) { // Haven't seen this NElement yet?
MergeMapMap[NElement+NSize] = Element; // Map the two together...
} else if (CurMappedVal != Element) {
// If we are mapping two different fields together this means that we need
// to merge fields in the current node due to merging in the source node.
//
mergeMappedValues(CurMappedVal, Element);
MergeMapMap[NElement+NSize] = MergeMap[i+NOffset];
assert(MergeMap[i+NOffset] < (int)Links.size()
&& "Element in merge map out of range!");
if (Size == 0) return;
}
}
#endif
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
N->MergeMap.clear();
N->Size = 0;
N->Ty.Ty = Type::VoidTy;
N->Ty.isArray = false;
// Merge the node types
NodeType |= N->NodeType;
N->NodeType = 0; // N is now a dead node.
// Adjust all of the type entries we are merging in by the offset...
//
if (NOffset != 0) { // This case is common enough to optimize for
// Offset all of the TypeEntries in N with their new offset
for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
N->TypeEntries[i].Offset += NOffset;
}
// ... now add them to the TypeEntries list.
MergeSortedVectors(TypeEntries, N->TypeEntries);
N->TypeEntries.clear(); // N is dead, no type-entries need exist
// Merge the globals list...
if (!N->Globals.empty()) {
MergeSortedVectors(Globals, N->Globals);
@ -564,7 +534,6 @@ void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, // FIXME: Kill StripScalars
bool StripAllocas) {
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
@ -655,9 +624,9 @@ static void markIncompleteNode(DSNode *N) {
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
markIncompleteNode(DSN);
}
@ -694,9 +663,9 @@ void DSGraph::markIncompleteNodes(bool markFormalArgs) {
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i];
// FIXME: Make more efficient by looking over Links directly
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
markIncompleteNode(DSN);
}
}
@ -772,11 +741,10 @@ static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return;
Alive.insert(N);
// FIXME: Make more efficient by looking over Links directly
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (!Alive.count(DSNH->getNode()))
markAlive(DSNH->getNode(), Alive);
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
if (!Alive.count(DSN))
markAlive(DSN, Alive);
}
static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
@ -787,17 +755,17 @@ static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
Visiting.insert(N);
// If any immediate successor is alive, N is alive
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (Alive.count(DSNH->getNode())) {
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
if (Alive.count(DSN)) {
Visiting.erase(N);
return true;
}
// Else if any successor reaches a live node, N is alive
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
if (DSNode *DSN = N->getLink(i).getNode())
if (checkGlobalAlive(DSN, Alive, Visiting)) {
Visiting.erase(N); return true;
}

View File

@ -184,13 +184,12 @@ DSNodeHandle GraphBuilder::getValueDest(Value &V) {
///
DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) {
DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
DSNodeHandle *Link = Node.getLink(LinkNo);
if (Link) return *Link;
DSNodeHandle &Link = Node.getLink(LinkNo);
if (!Link.getNode()) {
// If the link hasn't been created yet, make and return a new shadow node
DSNode *N = createNode(DSNode::ShadowNode);
Node.setLink(LinkNo, N);
return *Node.getLink(LinkNo);
Link = createNode(DSNode::ShadowNode);
}
return Link;
}
@ -236,15 +235,14 @@ void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
unsigned Offset = 0;
const PointerType *PTy = cast<PointerType>(GEP.getOperand(0)->getType());
const Type *CurTy = PTy->getElementType();
DSTypeRec &TopTypeRec =
Value.getNode()->getTypeRec(PTy->getElementType(), Value.getOffset());
if (Value.getNode()->mergeTypeInfo(CurTy, Value.getOffset())) {
// If the node had to be folded... exit quickly
if (TopTypeRec.Ty == Type::VoidTy) {
setDestTo(GEP, Value); // GEP result points to folded node
return;
}
#if 0
// Handle the pointer index specially...
if (GEP.getNumOperands() > 1 &&
GEP.getOperand(1) != ConstantSInt::getNullValue(Type::LongTy)) {
@ -269,6 +267,7 @@ void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
}
}
#endif
// All of these subscripts are indexing INTO the elements we have...
for (unsigned i = 2, e = GEP.getNumOperands(); i < e; ++i)
@ -276,6 +275,7 @@ void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Get the type indexing into...
const SequentialType *STy = cast<SequentialType>(CurTy);
CurTy = STy->getElementType();
#if 0
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(GEP.getOperand(i))) {
Offset += CS->getValue()*TD.getTypeSize(CurTy);
} else {
@ -298,6 +298,7 @@ void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j);
}
}
#endif
} else if (GEP.getOperand(i)->getType() == Type::UByteTy) {
unsigned FieldNo = cast<ConstantUInt>(GEP.getOperand(i))->getValue();
const StructType *STy = cast<StructType>(CurTy);
@ -320,7 +321,7 @@ void GraphBuilder::visitLoadInst(LoadInst &LI) {
Ptr.getNode()->NodeType |= DSNode::Read;
// Ensure a typerecord exists...
Ptr.getNode()->getTypeRec(LI.getType(), Ptr.getOffset());
Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset());
if (isPointerType(LI.getType()))
setDestTo(LI, getLink(Ptr));
@ -335,7 +336,7 @@ void GraphBuilder::visitStoreInst(StoreInst &SI) {
Dest.getNode()->NodeType |= DSNode::Modified;
// Ensure a typerecord exists...
Dest.getNode()->getTypeRec(StoredTy, Dest.getOffset());
Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset());
// Avoid adding edges from null, or processing non-"pointer" stores
if (isPointerType(StoredTy))

View File

@ -27,15 +27,15 @@ static string getCaption(const DSNode *N, const DSGraph *G) {
std::stringstream OS;
Module *M = G && &G->getFunction() ? G->getFunction().getParent() : 0;
for (unsigned i = 0, e = N->getTypeEntries().size(); i != e; ++i) {
WriteTypeSymbolic(OS, N->getTypeEntries()[i].Ty, M);
if (N->getTypeEntries()[i].Offset)
OS << "@" << N->getTypeEntries()[i].Offset;
if (N->getTypeEntries()[i].isArray)
if (N->isNodeCompletelyFolded())
OS << "FOLDED";
else {
WriteTypeSymbolic(OS, N->getType().Ty, M);
if (N->getType().isArray)
OS << " array";
OS << "\n";
}
if (N->NodeType) {
OS << ": ";
if (N->NodeType & DSNode::AllocaNode ) OS << "S";
if (N->NodeType & DSNode::HeapNode ) OS << "H";
if (N->NodeType & DSNode::GlobalNode ) OS << "G";
@ -43,6 +43,8 @@ static string getCaption(const DSNode *N, const DSGraph *G) {
if (N->NodeType & DSNode::Incomplete ) OS << "I";
if (N->NodeType & DSNode::Modified ) OS << "M";
if (N->NodeType & DSNode::Read ) OS << "R";
OS << "\n";
}
for (unsigned i = 0, e = N->getGlobals().size(); i != e; ++i) {
WriteAsOperand(OS, N->getGlobals()[i], false, true, M);
@ -75,11 +77,6 @@ struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
return "shape=Mrecord";//fontname=Courier";
}
static int getEdgeSourceLabel(const DSNode *Node, DSNode::iterator I) {
assert(Node == I.getNode() && "Iterator not for this node!");
return Node->getMergeMapLabel(I.getOffset());
}
/// addCustomGraphFeatures - Use this graph writing hook to emit call nodes
/// and the return node.
///
@ -95,7 +92,7 @@ struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
GW.emitSimpleNode(I->first, "plaintext=circle", OS.str());
// Add edge from return node to real destination
int EdgeDest = I->second.getOffset();
int EdgeDest = I->second.getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(I->first, -1, I->second.getNode(),
EdgeDest, "arrowtail=tee,color=gray63");
@ -108,7 +105,7 @@ struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
GW.emitSimpleNode((void*)1, "plaintext=circle", "returning");
// Add edge from return node to real destination
int RetEdgeDest = G->getRetNode().getOffset();
int RetEdgeDest = G->getRetNode().getOffset() >> DS::PointerShift;;
if (RetEdgeDest == 0) RetEdgeDest = -1;
GW.emitEdge((void*)1, -1, G->getRetNode().getNode(),
RetEdgeDest, "arrowtail=tee,color=gray63");
@ -121,18 +118,18 @@ struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
GW.emitSimpleNode(&Call, "shape=record", "call", Call.getNumPtrArgs()+2);
if (DSNode *N = Call.getRetVal().getNode()) {
int EdgeDest = Call.getRetVal().getOffset();
int EdgeDest = Call.getRetVal().getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(&Call, 0, N, EdgeDest, "color=gray63");
}
if (DSNode *N = Call.getCallee().getNode()) {
int EdgeDest = Call.getCallee().getOffset();
int EdgeDest = Call.getCallee().getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(&Call, 1, N, EdgeDest, "color=gray63");
}
for (unsigned j = 0, e = Call.getNumPtrArgs(); j != e; ++j)
if (DSNode *N = Call.getPtrArg(j).getNode()) {
int EdgeDest = Call.getPtrArg(j).getOffset();
int EdgeDest = Call.getPtrArg(j).getOffset() >> DS::PointerShift;
if (EdgeDest == 0) EdgeDest = -1;
GW.emitEdge(&Call, j+2, N, EdgeDest, "color=gray63");
}