[ARM64,C++11] Clean up the ARM64 LOH collection pass.

Range'ify a bunch of loops, mainly. As a result, we have a variety
of objects via reference rather than by pointer, so propogate that
through the various helper functions where it makes sense.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206337 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jim Grosbach 2014-04-15 22:57:02 +00:00
parent d66d570796
commit 09256c5bb5

View File

@ -173,7 +173,7 @@ struct ARM64CollectLOH : public MachineFunctionPass {
initializeARM64CollectLOHPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM64 Collect Linker Optimization Hint (LOH)";
@ -230,15 +230,14 @@ INITIALIZE_PASS_END(ARM64CollectLOH, "arm64-collect-loh",
/// \param nbRegs is used internally allocate some memory. It must be consistent
/// with the way sets is used.
static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
const MachineBasicBlock *MBB, unsigned reg,
const MachineBasicBlock &MBB, unsigned reg,
unsigned nbRegs) {
SetOfMachineInstr *result;
BlockToSetOfInstrsPerColor::iterator it = sets.find(MBB);
if (it != sets.end()) {
BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
if (it != sets.end())
result = it->second;
} else {
result = sets[MBB] = new SetOfMachineInstr[nbRegs];
}
else
result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
return result[reg];
}
@ -251,15 +250,15 @@ static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
/// "sets[reg]".
/// \pre set[reg] is valid.
static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
const MachineInstr *MI) {
return sets[reg][MI];
const MachineInstr &MI) {
return sets[reg][&MI];
}
/// Same as getUses but does not modify the input map: sets.
/// \return NULL if the couple (reg, MI) is not in sets.
static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
const MachineInstr *MI) {
InstrToInstrs::const_iterator Res = sets[reg].find(MI);
const MachineInstr &MI) {
InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
if (Res != sets[reg].end())
return &(Res->second);
return NULL;
@ -276,41 +275,36 @@ static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
/// definition. It also consider definitions of ADRP instructions as uses and
/// ignore other uses. The ADRPMode is used to collect the information for LHO
/// that involve ADRP operation only.
static void initReachingDef(MachineFunction *MF,
static void initReachingDef(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
BlockToSetOfInstrsPerColor &ReachableUses,
const MapRegToId &RegToId,
const MachineInstr *DummyOp, bool ADRPMode) {
const TargetMachine &TM = MF->getTarget();
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
unsigned NbReg = RegToId.size();
for (MachineFunction::const_iterator IMBB = MF->begin(), IMBBEnd = MF->end();
IMBB != IMBBEnd; ++IMBB) {
const MachineBasicBlock *MBB = &(*IMBB);
const MachineInstr **&BBGen = Gen[MBB];
for (MachineBasicBlock &MBB : MF) {
const MachineInstr **&BBGen = Gen[&MBB];
BBGen = new const MachineInstr *[NbReg];
memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
BitVector &BBKillSet = Kill[MBB];
BitVector &BBKillSet = Kill[&MBB];
BBKillSet.resize(NbReg);
for (MachineBasicBlock::const_iterator II = MBB->begin(), IEnd = MBB->end();
II != IEnd; ++II) {
bool IsADRP = II->getOpcode() == ARM64::ADRP;
for (const MachineInstr &MI : MBB) {
bool IsADRP = MI.getOpcode() == ARM64::ADRP;
// Process uses first.
if (IsADRP || !ADRPMode)
for (MachineInstr::const_mop_iterator IO = II->operands_begin(),
IOEnd = II->operands_end();
IO != IOEnd; ++IO) {
for (const MachineOperand &MO : MI.operands()) {
// Treat ADRP def as use, as the goal of the analysis is to find
// ADRP defs reached by other ADRP defs.
if (!IO->isReg() || (!ADRPMode && !IO->isUse()) ||
(ADRPMode && (!IsADRP || !IO->isDef())))
if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
(ADRPMode && (!IsADRP || !MO.isDef())))
continue;
unsigned CurReg = IO->getReg();
unsigned CurReg = MO.getReg();
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
if (ItCurRegId == RegToId.end())
continue;
@ -318,20 +312,18 @@ static void initReachingDef(MachineFunction *MF,
// if CurReg has not been defined, this use is reachable.
if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
getSet(ReachableUses, MBB, CurReg, NbReg).insert(&(*II));
getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
// current basic block definition for this color, if any, is in Gen.
if (BBGen[CurReg])
getUses(ColorOpToReachedUses, CurReg, BBGen[CurReg]).insert(&(*II));
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
}
// Process clobbers.
for (MachineInstr::const_mop_iterator IO = II->operands_begin(),
IOEnd = II->operands_end();
IO != IOEnd; ++IO) {
if (!IO->isRegMask())
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isRegMask())
continue;
// Clobbers kill the related colors.
const uint32_t *PreservedRegs = IO->getRegMask();
const uint32_t *PreservedRegs = MO.getRegMask();
// Set generated regs.
for (const auto Entry : RegToId) {
@ -342,19 +334,17 @@ static void initReachingDef(MachineFunction *MF,
// Do not register clobbered definition for no ADRP.
// This definition is not used anyway (otherwise register
// allocation is wrong).
BBGen[Reg] = ADRPMode ? II : NULL;
BBGen[Reg] = ADRPMode ? &MI : NULL;
BBKillSet.set(Reg);
}
}
}
// Process defs
for (MachineInstr::const_mop_iterator IO = II->operands_begin(),
IOEnd = II->operands_end();
IO != IOEnd; ++IO) {
if (!IO->isReg() || !IO->isDef())
// Process register defs.
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned CurReg = IO->getReg();
unsigned CurReg = MO.getReg();
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
if (ItCurRegId == RegToId.end())
continue;
@ -365,19 +355,19 @@ static void initReachingDef(MachineFunction *MF,
"Sub-register of an "
"involved register, not recorded as involved!");
BBKillSet.set(ItRegId->second);
BBGen[ItRegId->second] = &(*II);
BBGen[ItRegId->second] = &MI;
}
BBGen[ItCurRegId->second] = &(*II);
BBGen[ItCurRegId->second] = &MI;
}
}
// If we restrict our analysis to basic block scope, conservatively add a
// dummy
// use for each generated value.
if (!ADRPMode && DummyOp && !MBB->succ_empty())
if (!ADRPMode && DummyOp && !MBB.succ_empty())
for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
if (BBGen[CurReg])
getUses(ColorOpToReachedUses, CurReg, BBGen[CurReg]).insert(DummyOp);
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
}
}
@ -390,7 +380,7 @@ static void initReachingDef(MachineFunction *MF,
/// op.reachedUses
///
/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
static void reachingDefAlgorithm(MachineFunction *MF,
static void reachingDefAlgorithm(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
BlockToSetOfInstrsPerColor &In,
BlockToSetOfInstrsPerColor &Out,
@ -400,10 +390,7 @@ static void reachingDefAlgorithm(MachineFunction *MF,
bool HasChanged;
do {
HasChanged = false;
for (MachineFunction::const_iterator IMBB = MF->begin(),
IMBBEnd = MF->end();
IMBB != IMBBEnd; ++IMBB) {
const MachineBasicBlock *MBB = &(*IMBB);
for (MachineBasicBlock &MBB : MF) {
unsigned CurReg;
for (CurReg = 0; CurReg < NbReg; ++CurReg) {
SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
@ -412,24 +399,21 @@ static void reachingDefAlgorithm(MachineFunction *MF,
SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
unsigned Size = BBOutSet.size();
// In[bb][color] = U Out[bb.predecessors][color]
for (MachineBasicBlock::const_pred_iterator
PredMBB = MBB->pred_begin(),
EndPredMBB = MBB->pred_end();
PredMBB != EndPredMBB; ++PredMBB) {
for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
}
// insert reachableUses[bb][color] in each in[bb][color] op.reachedses
for (const MachineInstr *MI: BBInSet) {
for (const MachineInstr *MI : BBInSet) {
SetOfMachineInstr &OpReachedUses =
getUses(ColorOpToReachedUses, CurReg, MI);
getUses(ColorOpToReachedUses, CurReg, *MI);
OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
}
// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
if (!Kill[MBB].test(CurReg))
if (!Kill[&MBB].test(CurReg))
BBOutSet.insert(BBInSet.begin(), BBInSet.end());
if (Gen[MBB][CurReg])
BBOutSet.insert(Gen[MBB][CurReg]);
if (Gen[&MBB][CurReg])
BBOutSet.insert(Gen[&MBB][CurReg]);
HasChanged |= BBOutSet.size() != Size;
}
}
@ -442,21 +426,14 @@ static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
BlockToSetOfInstrsPerColor &Out,
BlockToInstrPerColor &Gen,
BlockToSetOfInstrsPerColor &ReachableUses) {
for (BlockToSetOfInstrsPerColor::const_iterator IT = Out.begin(),
End = Out.end();
IT != End; ++IT)
delete[] IT->second;
for (BlockToSetOfInstrsPerColor::const_iterator IT = In.begin(),
End = In.end();
IT != End; ++IT)
delete[] IT->second;
for (BlockToSetOfInstrsPerColor::const_iterator IT = ReachableUses.begin(),
End = ReachableUses.end();
IT != End; ++IT)
delete[] IT->second;
for (BlockToInstrPerColor::const_iterator IT = Gen.begin(), End = Gen.end();
IT != End; ++IT)
delete[] IT->second;
for (auto &IT : Out)
delete[] IT.second;
for (auto &IT : In)
delete[] IT.second;
for (auto &IT : ReachableUses)
delete[] IT.second;
for (auto &IT : Gen)
delete[] IT.second;
}
/// Reaching definition algorithm.
@ -470,7 +447,7 @@ static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
/// @p DummyOp.
/// \pre ColorOpToReachedUses is an array of at least number of registers of
/// InstrToInstrs.
static void reachingDef(MachineFunction *MF,
static void reachingDef(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
const MapRegToId &RegToId, bool ADRPMode = false,
const MachineInstr *DummyOp = NULL) {
@ -511,18 +488,12 @@ static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
continue;
DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
InstrToInstrs::const_iterator DefsIt = ColorOpToReachedUses[CurReg].begin();
InstrToInstrs::const_iterator DefsItEnd =
ColorOpToReachedUses[CurReg].end();
for (; DefsIt != DefsItEnd; ++DefsIt) {
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
DEBUG(dbgs() << "Def:\n");
DEBUG(DefsIt->first->print(dbgs()));
DEBUG(DefsIt.first->print(dbgs()));
DEBUG(dbgs() << "Reachable uses:\n");
for (SetOfMachineInstr::const_iterator UsesIt = DefsIt->second.begin(),
UsesItEnd = DefsIt->second.end();
UsesIt != UsesItEnd; ++UsesIt) {
DEBUG((*UsesIt)->print(dbgs()));
}
for (const MachineInstr *MI : DefsIt.second)
DEBUG(MI->print(dbgs()));
}
}
}
@ -603,34 +574,29 @@ static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
if (ColorOpToReachedUses[CurReg].empty())
continue;
InstrToInstrs::const_iterator DefsIt = ColorOpToReachedUses[CurReg].begin();
InstrToInstrs::const_iterator DefsItEnd =
ColorOpToReachedUses[CurReg].end();
for (; DefsIt != DefsItEnd; ++DefsIt) {
for (SetOfMachineInstr::const_iterator UsesIt = DefsIt->second.begin(),
UsesItEnd = DefsIt->second.end();
UsesIt != UsesItEnd; ++UsesIt) {
const MachineInstr *Def = DefsIt->first;
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
for (const MachineInstr *MI : DefsIt.second) {
const MachineInstr *Def = DefsIt.first;
MapRegToId::const_iterator It;
// if all the reaching defs are not adrp, this use will not be
// simplifiable.
if ((ADRPMode && Def->getOpcode() != ARM64::ADRP) ||
(!ADRPMode && !canDefBePartOfLOH(Def)) ||
(!ADRPMode && isCandidateStore(*UsesIt) &&
(!ADRPMode && isCandidateStore(MI) &&
// store are LOH candidate iff the end of the chain is used as
// base.
((It = RegToId.find((*UsesIt)->getOperand(1).getReg())) == EndIt ||
((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
It->second != CurReg))) {
NotCandidate.insert(*UsesIt);
NotCandidate.insert(MI);
continue;
}
// Do not consider self reaching as a simplifiable case for ADRP.
if (!ADRPMode || *UsesIt != DefsIt->first) {
UseToReachingDefs[*UsesIt].insert(DefsIt->first);
if (!ADRPMode || MI != DefsIt.first) {
UseToReachingDefs[MI].insert(DefsIt.first);
// If UsesIt has several reaching definitions, it is not
// candidate for simplificaton in non-ADRPMode.
if (!ADRPMode && UseToReachingDefs[*UsesIt].size() > 1)
NotCandidate.insert(*UsesIt);
if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
NotCandidate.insert(MI);
}
}
}
@ -747,8 +713,9 @@ static bool isCandidate(const MachineInstr *Instr,
if (!MDT->dominates(Def, Instr))
return false;
// Move one node up in the simple chain.
if (UseToDefs.find(Def) == UseToDefs.end()
// The map may contain garbage we have to ignore.
if (UseToDefs.find(Def) ==
UseToDefs.end()
// The map may contain garbage we have to ignore.
||
UseToDefs.find(Def)->second.empty())
return false;
@ -764,7 +731,7 @@ static bool isCandidate(const MachineInstr *Instr,
return false;
}
static bool registerADRCandidate(const MachineInstr *Use,
static bool registerADRCandidate(const MachineInstr &Use,
const InstrToInstrs &UseToDefs,
const InstrToInstrs *DefsPerColorToUses,
ARM64FunctionInfo &ARM64FI,
@ -773,38 +740,38 @@ static bool registerADRCandidate(const MachineInstr *Use,
// Look for opportunities to turn ADRP -> ADD or
// ADRP -> LDR GOTPAGEOFF into ADR.
// If ADRP has more than one use. Give up.
if (Use->getOpcode() != ARM64::ADDXri &&
(Use->getOpcode() != ARM64::LDRXui ||
!(Use->getOperand(2).getTargetFlags() & ARM64II::MO_GOT)))
if (Use.getOpcode() != ARM64::ADDXri &&
(Use.getOpcode() != ARM64::LDRXui ||
!(Use.getOperand(2).getTargetFlags() & ARM64II::MO_GOT)))
return false;
InstrToInstrs::const_iterator It = UseToDefs.find(Use);
InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
// The map may contain garbage that we need to ignore.
if (It == UseToDefs.end() || It->second.empty())
return false;
const MachineInstr *Def = *It->second.begin();
if (Def->getOpcode() != ARM64::ADRP)
const MachineInstr &Def = **It->second.begin();
if (Def.getOpcode() != ARM64::ADRP)
return false;
// Check the number of users of ADRP.
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def->getOperand(0).getReg())->second, Def);
RegToId.find(Def.getOperand(0).getReg())->second, Def);
if (Users->size() > 1) {
++NumADRComplexCandidate;
return false;
}
++NumADRSimpleCandidate;
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Def)) &&
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
"ADRP already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Use)) &&
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
"ADD already involved in LOH.");
DEBUG(dbgs() << "Record AdrpAdd\n" << *Def << '\n' << *Use << '\n');
DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
SmallVector<const MachineInstr *, 2> Args;
Args.push_back(Def);
Args.push_back(Use);
Args.push_back(&Def);
Args.push_back(&Use);
ARM64FI.addLOHDirective(Use->getOpcode() == ARM64::ADDXri ? MCLOH_AdrpAdd
: MCLOH_AdrpLdrGot,
ARM64FI.addLOHDirective(Use.getOpcode() == ARM64::ADDXri ? MCLOH_AdrpAdd
: MCLOH_AdrpLdrGot,
Args);
return true;
}
@ -831,20 +798,18 @@ static void computeOthers(const InstrToInstrs &UseToDefs,
// to be changed.
SetOfMachineInstr PotentialCandidates;
SetOfMachineInstr PotentialADROpportunities;
for (InstrToInstrs::const_iterator UseIt = UseToDefs.begin(),
EndUseIt = UseToDefs.end();
UseIt != EndUseIt; ++UseIt) {
for (auto &Use : UseToDefs) {
// If no definition is available, this is a non candidate.
if (UseIt->second.empty())
if (Use.second.empty())
continue;
// Keep only instructions that are load or store and at the end of
// a ADRP -> ADD/LDR/Nothing chain.
// We already filtered out the no-chain cases.
if (!isCandidate(UseIt->first, UseToDefs, MDT)) {
PotentialADROpportunities.insert(UseIt->first);
if (!isCandidate(Use.first, UseToDefs, MDT)) {
PotentialADROpportunities.insert(Use.first);
continue;
}
PotentialCandidates.insert(UseIt->first);
PotentialCandidates.insert(Use.first);
}
// Make the following distinctions for statistics as the linker does
@ -866,10 +831,7 @@ static void computeOthers(const InstrToInstrs &UseToDefs,
#ifdef DEBUG
SetOfMachineInstr DefsOfPotentialCandidates;
#endif
for (CandidateIt = PotentialCandidates.begin(),
EndCandidateIt = PotentialCandidates.end();
CandidateIt != EndCandidateIt; ++CandidateIt) {
const MachineInstr *Candidate = *CandidateIt;
for (const MachineInstr *Candidate : PotentialCandidates) {
// Get the definition of the candidate i.e., ADD or LDR.
const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
// Record the elements of the chain.
@ -880,20 +842,20 @@ static void computeOthers(const InstrToInstrs &UseToDefs,
// Check the number of users of this node.
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def->getOperand(0).getReg())->second, Def);
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
if (Users->size() > 1) {
#ifdef DEBUG
// if all the uses of this def are in potential candidate, this is
// a complex candidate of level 2.
SetOfMachineInstr::const_iterator UseIt = Users->begin();
SetOfMachineInstr::const_iterator EndUseIt = Users->end();
for (; UseIt != EndUseIt; ++UseIt) {
if (!PotentialCandidates.count(*UseIt)) {
bool IsLevel2 = true;
for (const MachineInstr *MI : *Users) {
if (!PotentialCandidates.count(MI)) {
++NumTooCplxLvl2;
IsLevel2 = false;
break;
}
}
if (UseIt == EndUseIt)
if (IsLevel2)
++NumCplxLvl2;
#endif // DEBUG
PotentialADROpportunities.insert(Def);
@ -908,7 +870,7 @@ static void computeOthers(const InstrToInstrs &UseToDefs,
// Check the number of users of the first node in the chain, i.e., ADRP
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def->getOperand(0).getReg())->second, Def);
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
if (Users->size() > 1) {
#ifdef DEBUG
// if all the uses of this def are in the defs of the potential candidate,
@ -1030,8 +992,8 @@ static void computeOthers(const InstrToInstrs &UseToDefs,
}
// Now, we grabbed all the big patterns, check ADR opportunities.
for (const MachineInstr *Candidate: PotentialADROpportunities)
registerADRCandidate(Candidate, UseToDefs, DefsPerColorToUses, ARM64FI,
for (const MachineInstr *Candidate : PotentialADROpportunities)
registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, ARM64FI,
InvolvedInLOHs, RegToId);
}
@ -1053,18 +1015,14 @@ static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
}
DEBUG(dbgs() << "** Collect Involved Register\n");
for (MachineFunction::const_iterator IMBB = MF.begin(), IMBBEnd = MF.end();
IMBB != IMBBEnd; ++IMBB)
for (MachineBasicBlock::const_iterator II = IMBB->begin(),
IEnd = IMBB->end();
II != IEnd; ++II) {
if (!canDefBePartOfLOH(II))
for (const auto &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (!canDefBePartOfLOH(&MI))
continue;
// Process defs
for (MachineInstr::const_mop_iterator IO = II->operands_begin(),
IOEnd = II->operands_end();
for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
IOEnd = MI.operands_end();
IO != IOEnd; ++IO) {
if (!IO->isReg() || !IO->isDef())
continue;
@ -1079,21 +1037,22 @@ static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
}
}
}
}
}
bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
MapRegToId RegToId;
MapIdToReg IdToReg;
ARM64FunctionInfo *ARM64FI = Fn.getInfo<ARM64FunctionInfo>();
ARM64FunctionInfo *ARM64FI = MF.getInfo<ARM64FunctionInfo>();
assert(ARM64FI && "No MachineFunctionInfo for this function!");
DEBUG(dbgs() << "Looking for LOH in " << Fn.getName() << '\n');
DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
collectInvolvedReg(Fn, RegToId, IdToReg, TRI);
collectInvolvedReg(MF, RegToId, IdToReg, TRI);
if (RegToId.empty())
return false;
@ -1103,7 +1062,7 @@ bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) {
static_cast<const ARM64InstrInfo *>(TM.getInstrInfo());
// For local analysis, create a dummy operation to record uses that are not
// local.
DummyOp = Fn.CreateMachineInstr(TII->get(ARM64::COPY), DebugLoc());
DummyOp = MF.CreateMachineInstr(TII->get(ARM64::COPY), DebugLoc());
}
unsigned NbReg = RegToId.size();
@ -1114,7 +1073,7 @@ bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) {
// Compute the reaching def in ADRP mode, meaning ADRP definitions
// are first considered as uses.
reachingDef(&Fn, ColorOpToReachedUses, RegToId, true, DummyOp);
reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
DEBUG(dbgs() << "ADRP reaching defs\n");
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
@ -1131,7 +1090,7 @@ bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) {
ColorOpToReachedUses = new InstrToInstrs[NbReg];
// first perform a regular reaching def analysis.
reachingDef(&Fn, ColorOpToReachedUses, RegToId, false, DummyOp);
reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
DEBUG(dbgs() << "All reaching defs\n");
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
@ -1145,7 +1104,7 @@ bool ARM64CollectLOH::runOnMachineFunction(MachineFunction &Fn) {
delete[] ColorOpToReachedUses;
if (BasicBlockScopeOnly)
Fn.DeleteMachineInstr(DummyOp);
MF.DeleteMachineInstr(DummyOp);
return Modified;
}