This change is to fix rdar://12571717 which is about assertion in Reassociate pass.

The assertion is trigged when the Reassociater tries to transform expression
     ... + 2 * n * 3 + 2 * m + ...
  into:
     ... + 2 * (n*3 + m).

In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more. 

Review is pending. But I'd like commit first in order to help those who are waiting 
for this fix. 


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167740 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Shuxin Yang 2012-11-12 19:34:11 +00:00
parent ae692f2bae
commit 0a46bf13a3
3 changed files with 330 additions and 11 deletions

View File

@ -1,4 +1,4 @@
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// The LLVM Compiler Infrastructure
//
@ -41,6 +41,8 @@
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <deque>
#include <set>
using namespace llvm;
STATISTIC(NumChanged, "Number of insts reassociated");
@ -113,10 +115,148 @@ namespace {
}
namespace {
class Reassociate;
class isInstDeadFunc {
public:
bool operator() (Instruction* I) {
return isInstructionTriviallyDead(I);
}
};
class RmInstCallBackFunc {
Reassociate *reassoc_;
public:
RmInstCallBackFunc(Reassociate* ra): reassoc_(ra) {}
inline void operator() (Instruction*);
};
// The worklist has following traits:
// - it is pretty much a dequeue.
// - has "set" semantic, meaning all elements in the worklist are distinct.
// - efficient in-place element removal (by replacing the element with
// invalid value 0).
//
class RedoWorklist {
public:
typedef AssertingVH<Instruction> value_type;
typedef std::set<value_type> set_type;
typedef std::deque<value_type> deque_type;
// caller cannot modify element via iterator, hence constant.
typedef deque_type::const_iterator iterator;
typedef deque_type::const_iterator const_iterator;
typedef deque_type::size_type size_type;
RedoWorklist() {}
bool empty() const {
return deque_.empty();
}
size_type size() const {
return deque_.size();
}
// return true iff X is in the worklist
bool found(const value_type &X) {
return set_.find(X) != set_.end();
}
iterator begin() {
return deque_.begin();
}
const_iterator begin() const {
return deque_.begin();
}
iterator end() {
return deque_.end();
}
const_iterator end() const {
return deque_.end();
}
const value_type &back() const {
assert(!empty() && "worklist is empty");
return deque_.back();
}
// If element X is already in the worklist, do nothing but return false;
// otherwise, append X to the worklist and return true.
//
bool push_back(const value_type &X) {
bool result = set_.insert(X).second;
if (result)
deque_.push_back(X);
return result;
}
// insert() is the alias of push_back()
bool insert(const value_type &X) {
return push_back(X);
}
void clear() {
set_.clear();
deque_.clear();
}
void pop_back() {
assert(!empty() && "worklist is empty");
set_.erase(back());
deque_.pop_back();
}
value_type pop_back_val() {
value_type Ret = back();
pop_back();
return Ret;
}
const value_type &front() const {
assert(!empty() && "worklist is empty");
return deque_.front();
}
void pop_front() {
assert(!empty() && "worklist is empty");
set_.erase(front());
deque_.pop_front();
}
value_type pop_front_val() {
value_type Ret = front();
pop_front();
return Ret;
}
// Remove an element from the worklist. Return true iff the element was
// in the worklist.
bool remove(const value_type& X);
template <typename pred, typename call_back_func>
int inplace_remove(pred p, call_back_func cb);
template <typename pred, typename call_back_func>
int inplace_rremove(pred p, call_back_func cb);
void append(RedoWorklist&);
private:
set_type set_;
deque_type deque_;
};
class Reassociate : public FunctionPass {
friend class RmInstCallBackFunc;
DenseMap<BasicBlock*, unsigned> RankMap;
DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
SetVector<AssertingVH<Instruction> > RedoInsts;
RedoWorklist RedoInsts;
RedoWorklist TmpRedoInsts;
bool MadeChange;
public:
static char ID; // Pass identification, replacement for typeid
@ -141,9 +281,12 @@ namespace {
SmallVectorImpl<Factor> &Factors);
Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
SmallVectorImpl<Factor> &Factors);
void removeNegFromMulOps(SmallVectorImpl<ValueEntry> &Ops);
Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void EraseInst(Instruction *I);
void EraseInstCallBack(Instruction *I);
void EraseAllDeadInst();
void OptimizeInst(Instruction *I);
};
}
@ -182,6 +325,75 @@ static bool isUnmovableInstruction(Instruction *I) {
return false;
}
inline void RmInstCallBackFunc::operator() (Instruction* I) {
reassoc_->EraseInstCallBack(I);
}
// Remove an item from the worklist. Return true iff the element was
// in the worklist.
bool RedoWorklist::remove(const value_type& X) {
if (set_.erase(X)) {
deque_type::iterator I = std::find(deque_.begin(), deque_.end(), X);
assert(I != deque_.end() && "Can not find element");
deque_.erase(I);
return true;
}
return false;
}
// Forward go through each element e, calling p(e) to tell if e should be
// removed or not; if p(e) = true, then e will be replaced with NULL to
// indicate it is removed from the worklist, and functor cb will be
// called for further processing on e. The functors should not invalidate
// the iterator by inserting or deleteing element to and from the worklist.
//
// Returns the number of instruction being deleted.
template <typename pred, typename call_back_func>
int RedoWorklist::inplace_remove(pred p, call_back_func cb) {
int cnt = 0;
for (typename deque_type::iterator iter = deque_.begin(),
iter_e = deque_.end(); iter != iter_e; iter++) {
value_type &element = *iter;
if (p(element) && set_.erase(element)) {
Instruction* t = element;
element.~value_type();
new (&element) value_type(NULL);
cb(t);
cnt ++;
}
}
return cnt;
}
// inplace_rremove() is the same as inplace_remove() except that elements
// are visited in backward order.
template <typename pred, typename call_back_func>
int RedoWorklist::inplace_rremove(pred p, call_back_func cb) {
int cnt = 0;
for (typename deque_type::reverse_iterator iter = deque_.rbegin(),
iter_e = deque_.rend(); iter != iter_e; iter++) {
value_type &element = *iter;
if (p(element) && set_.erase(element)) {
Instruction* t = element;
element.~value_type();
new (&element) value_type(NULL);
cb(t);
cnt ++;
}
}
return cnt;
}
void RedoWorklist::append(RedoWorklist& that) {
deque_type &that_deque = that.deque_;
while (!that_deque.empty()) {
push_back(that_deque.front());
that_deque.pop_front();
}
that.clear();
}
void Reassociate::BuildRankMap(Function &F) {
unsigned i = 2;
@ -1418,8 +1630,66 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
return V;
}
// Multiply Ops may have some negation operators. This situation arises
// when the negation operators have multiple uses, and LinearizeExprTree() has
// to treat them as leaf operands. Before multiplication optimization begins,
// get rid of the negations wherever possible.
void Reassociate::removeNegFromMulOps(SmallVectorImpl<ValueEntry> &Ops) {
int32_t NegIdx = -1;
// loop over all elements except the last one
for (int32_t Idx = 0, IdxEnd = Ops.size() - 1; Idx < IdxEnd; Idx++) {
ValueEntry &VE = Ops[Idx];
if (!BinaryOperator::isNeg(VE.Op))
continue;
if (NegIdx < 0) {
NegIdx = Idx;
continue;
}
// Find a pair of negation operators, say -X and -Y, change them to
// X and Y respectively.
ValueEntry &VEX = Ops[NegIdx];
Value *OpX = cast<BinaryOperator>(VEX.Op)->getOperand(1);
VEX.Op = OpX;
VEX.Rank = getRank(OpX);
Value *OpY = cast<BinaryOperator>(VE.Op)->getOperand(1);
VE.Op = OpY;
VE.Rank = getRank(OpY);
NegIdx = -1;
}
if (NegIdx >= 0) {
// We have visited odd number of negation operators so far.
// Check if the last element is negation as well.
ValueEntry &Last = Ops.back();
Value *LastOp = Last.Op;
if (!isa<ConstantInt>(LastOp) && !BinaryOperator::isNeg(LastOp))
return;
ValueEntry& PrevNeg = Ops[NegIdx];
Value *Op = cast<BinaryOperator>(PrevNeg.Op)->getOperand(1);
PrevNeg.Op = Op;
PrevNeg.Rank = getRank(Op);
if (isa<ConstantInt>(LastOp))
Last.Op = ConstantExpr::getNeg(cast<Constant>(LastOp));
else {
LastOp = cast<BinaryOperator>(PrevNeg.Op)->getOperand(1);
Last.Op = LastOp;
Last.Rank = getRank(LastOp);
}
}
}
Value *Reassociate::OptimizeMul(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Simplify the operands: (-x)*(-y) -> x*y, and (-x)*c -> x*(-c)
removeNegFromMulOps(Ops);
// We can only optimize the multiplies when there is a chain of more than
// three, such that a balanced tree might require fewer total multiplies.
if (Ops.size() < 4)
@ -1478,14 +1748,17 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
return 0;
}
/// EraseInst - Zap the given instruction, adding interesting operands to the
/// work list.
void Reassociate::EraseInst(Instruction *I) {
// EraseInstCallBack is a helper function of EraseInst which will be called to
// delete an individual instruction, and it is also a callback funciton when
// EraseAllDeadInst is called to delete all dead instruciton in the Redo
// worklist (RedoInsts).
//
void Reassociate::EraseInstCallBack(Instruction *I) {
DEBUG(dbgs() << "Erase instruction :" << *I << "\n");
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
// Erase the dead instruction.
ValueRankMap.erase(I);
RedoInsts.remove(I);
I->eraseFromParent();
// Optimize its operands.
SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
@ -1497,10 +1770,36 @@ void Reassociate::EraseInst(Instruction *I) {
while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
Visited.insert(Op))
Op = Op->use_back();
RedoInsts.insert(Op);
// The caller may be itearating the RedoInsts. Inserting a new element to
// RedoInsts will invaidate the iterator. Instead, we temporally place the
// new candidate to TmpRedoInsts. It is up to caller to combine
// TmpRedoInsts and RedoInsts together.
//
if (!RedoInsts.found(Op))
TmpRedoInsts.insert(Op);
}
}
/// EraseInst - Zap the given instruction, adding interesting operands to the
/// work list.
void Reassociate::EraseInst(Instruction *I) {
RedoInsts.remove(I);
// Since EraseInstCallBack() put new reassociation candidates to TmpRedoInsts
// we need to copy the candidates back to RedoInsts.
TmpRedoInsts.clear();
EraseInstCallBack(I);
RedoInsts.append(TmpRedoInsts);
}
/// EraseAllDeadInst - Remove all dead instructions from the worklist.
void Reassociate::EraseAllDeadInst() {
TmpRedoInsts.clear();
RedoInsts.inplace_rremove(isInstDeadFunc(), RmInstCallBackFunc(this));
RedoInsts.append(TmpRedoInsts);
}
/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
void Reassociate::OptimizeInst(Instruction *I) {
@ -1508,6 +1807,8 @@ void Reassociate::OptimizeInst(Instruction *I) {
if (!isa<BinaryOperator>(I))
return;
DEBUG(dbgs() << "\n>Opt Instruction: " << *I << '\n');
if (I->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(I->getOperand(1)))
// If an operand of this shift is a reassociable multiply, or if the shift
@ -1686,9 +1987,14 @@ bool Reassociate::runOnFunction(Function &F) {
++II;
}
DEBUG(dbgs() << "Process instructions in worklist\n");
EraseAllDeadInst();
// If this produced extra instructions to optimize, handle them now.
while (!RedoInsts.empty()) {
Instruction *I = RedoInsts.pop_back_val();
Instruction *I = RedoInsts.pop_front_val();
if (!I)
continue;
if (isInstructionTriviallyDead(I))
EraseInst(I);
else

View File

@ -0,0 +1,13 @@
; RUN: opt -S -reassociate < %s | FileCheck %s
; t=-a; retval = t*7|t => t-a; retval => a*-7|t
define i32 @mulneg(i32 %a) nounwind uwtable ssp {
entry:
%sub = sub nsw i32 0, %a
%tmp1 = mul i32 %sub, 7
%tmp2 = xor i32 %sub, %tmp1
ret i32 %tmp2
; CHECK: entry
; CHECK: %tmp1 = mul i32 %a, -7
; CHECK: ret
}

View File

@ -1,7 +1,7 @@
; RUN: opt < %s -reassociate -S | FileCheck %s
define i64 @multistep1(i64 %a, i64 %b, i64 %c) {
; Check that a*a*b+a*a*c is turned into a*(a*(b+c)).
; Check that a*a*b+a*a*c is turned into (a*a)*(b+c).
; CHECK: @multistep1
%t0 = mul i64 %a, %b
%t1 = mul i64 %a, %t0 ; a*(a*b)
@ -9,8 +9,8 @@ define i64 @multistep1(i64 %a, i64 %b, i64 %c) {
%t3 = mul i64 %a, %t2 ; a*(a*c)
%t4 = add i64 %t1, %t3
; CHECK-NEXT: add i64 %c, %b
; CHECK-NEXT: mul i64 %tmp{{.*}}, %a
; CHECK-NEXT: mul i64 %tmp{{.*}}, %a
; CHECK-NEXT: mul i64 %a, %a
; CHECK-NEXT: mul i64 %tmp{{.*}}, %tmp{{.*}}
; CHECK-NEXT: ret
ret i64 %t4
}