MEGAPATCH checkin.

For details, See: docs/2002-06-25-MegaPatchInfo.txt


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2778 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2002-06-25 16:13:21 +00:00
parent 18961504fc
commit 0b12b5f50e
26 changed files with 654 additions and 726 deletions

View File

@ -168,7 +168,7 @@ void Interpreter::initializeExecutionEngine() {
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
static void InitializeMemory(Constant *Init, char *Addr) {
static void InitializeMemory(const Constant *Init, char *Addr) {
#define INITIALIZE_MEMORY(TYID, CLASS, TY) \
case Type::TYID##TyID: { \
TY Tmp = cast<CLASS>(Init)->getValue(); \
@ -190,7 +190,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
#undef INITIALIZE_MEMORY
case Type::ArrayTyID: {
ConstantArray *CPA = cast<ConstantArray>(Init);
const ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
@ -200,7 +200,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
}
case Type::StructTyID: {
ConstantStruct *CPS = cast<ConstantStruct>(Init);
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
@ -212,7 +212,8 @@ static void InitializeMemory(Constant *Init, char *Addr) {
case Type::PointerTyID:
if (isa<ConstantPointerNull>(Init)) {
*(void**)Addr = 0;
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Init)) {
} else if (const ConstantPointerRef *CPR =
dyn_cast<ConstantPointerRef>(Init)) {
GlobalAddress *Address =
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
*(void**)Addr = (GenericValue*)Address->Ptr;
@ -266,9 +267,9 @@ Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
#define IMPLEMENT_UNARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = OP Src.TY##Val; break
static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
static void executeNotInst(UnaryOperator &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_UNARY_OPERATOR(~, UByte);
@ -283,7 +284,7 @@ static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Not instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
//===----------------------------------------------------------------------===//
@ -592,13 +593,13 @@ static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
switch (I.getOpcode()) {
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break;
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break;
@ -618,7 +619,7 @@ static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
R = Src1;
}
SetValue(I, R, SF);
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
@ -683,14 +684,14 @@ void Interpreter::exitCalled(GenericValue GV) {
PerformExitStuff();
}
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
// Save previously executing meth
@ -737,16 +738,16 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
Value *Cond = I->getCondition();
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
GenericValue CondVal = getOperandValue(Cond, SF);
if (CondVal.BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
Dest = I.getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
@ -756,11 +757,11 @@ void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType()->getElementType(); // Type to be allocated
void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) {
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements = getOperandValue(I->getOperand(0), SF).UIntVal;
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
// Allocate enough memory to hold the type...
// FIXME: Don't use CALLOC, use a tainted malloc.
@ -769,15 +770,15 @@ void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
GenericValue Result;
Result.PointerVal = (PointerTy)Memory;
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
if (I->getOpcode() == Instruction::Alloca)
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
assert(isa<PointerType>(I->getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I->getOperand(0), SF);
static void executeFreeInst(FreeInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I.getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free((void*)Value.PointerVal); // Free memory
}
@ -787,20 +788,20 @@ static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
// function returns the offset that arguments ArgOff+1 -> NumArgs specify for
// the pointer type specified by argument Arg.
//
static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
assert(isa<PointerType>(I->getPointerOperand()->getType()) &&
static PointerTy getElementOffset(MemAccessInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getPointerOperand()->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
PointerTy Total = 0;
const Type *Ty = I->getPointerOperand()->getType();
const Type *Ty = I.getPointerOperand()->getType();
unsigned ArgOff = I->getFirstIndexOperandNumber();
while (ArgOff < I->getNumOperands()) {
unsigned ArgOff = I.getFirstIndexOperandNumber();
while (ArgOff < I.getNumOperands()) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SLO = TD.getStructLayout(STy);
// Indicies must be ubyte constants...
const ConstantUInt *CPU = cast<ConstantUInt>(I->getOperand(ArgOff++));
const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand(ArgOff++));
assert(CPU->getType() == Type::UByteTy);
unsigned Index = CPU->getValue();
@ -818,13 +819,13 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be uint type...
assert(I->getOperand(ArgOff)->getType() == Type::UIntTy);
unsigned Idx = getOperandValue(I->getOperand(ArgOff++), SF).UIntVal;
assert(I.getOperand(ArgOff)->getType() == Type::UIntTy);
unsigned Idx = getOperandValue(I.getOperand(ArgOff++), SF).UIntVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << (ArgOff-I->getFirstIndexOperandNumber())
<< " Subscript #" << (ArgOff-I.getFirstIndexOperandNumber())
<< "\n";
// Get outta here!!!
siglongjmp(SignalRecoverBuffer, SIGTRAP);
@ -839,17 +840,17 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
return Total;
}
static void executeGEPInst(GetElementPtrInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
GenericValue Result;
Result.PointerVal = SrcPtr + getElementOffset(I, SF);
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
}
static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices
SrcPtr += Offset;
@ -857,7 +858,7 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
GenericValue *Ptr = (GenericValue*)SrcPtr;
GenericValue Result;
switch (I->getType()->getPrimitiveID()) {
switch (I.getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break;
@ -871,21 +872,21 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break;
case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break;
default:
cout << "Cannot load value of type " << I->getType() << "!\n";
cout << "Cannot load value of type " << I.getType() << "!\n";
}
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
}
static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeStoreInst(StoreInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
SrcPtr += getElementOffset(I, SF); // Handle any structure indices
GenericValue *Ptr = (GenericValue *)SrcPtr;
GenericValue Val = getOperandValue(I->getOperand(0), SF);
GenericValue Val = getOperandValue(I.getOperand(0), SF);
switch (I->getOperand(0)->getType()->getPrimitiveID()) {
switch (I.getOperand(0)->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break;
@ -899,7 +900,7 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break;
case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break;
default:
cout << "Cannot store value of type " << I->getType() << "!\n";
cout << "Cannot store value of type " << I.getType() << "!\n";
}
}
@ -908,44 +909,44 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) {
ECStack.back().Caller = &I;
vector<GenericValue> ArgVals;
ArgVals.reserve(I->getNumOperands()-1);
for (unsigned i = 1; i < I->getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I->getOperand(i), SF));
ArgVals.reserve(I.getNumOperands()-1);
for (unsigned i = 1; i < I.getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I->getCalledValue(), SF);
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
callMethod((Function*)SRC.PointerVal, ArgVals);
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
static void executePHINode(PHINode &I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
for (unsigned i = I.getNumIncomingValues(); i > 0;) {
if (I.getIncomingBlock(--i) == PrevBB) {
IncomingValue = I.getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
SetValue(&I, getOperandValue(IncomingValue, SF), SF);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeShlInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -960,13 +961,13 @@ static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Shl instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeShrInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -981,7 +982,7 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Shr instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
@ -1016,10 +1017,10 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static void executeCastInst(CastInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType();
const Type *SrcTy = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
static void executeCastInst(CastInst &I, ExecutionContext &SF) {
const Type *Ty = I.getType();
const Type *SrcTy = I.getOperand(0)->getType();
GenericValue Src = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -1037,7 +1038,7 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled dest type for cast instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
@ -1047,22 +1048,17 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Function *M) : Annotation(MethodInfoAID) {
MethodInfo::MethodInfo(Function *F) : Annotation(MethodInfoAID) {
// Assign slot numbers to the function arguments...
const Function::ArgumentListType &ArgList = M->getArgumentList();
for (Function::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI)
((Value*)(*AI))->addAnnotation(new SlotNumber(getValueSlot((Value*)*AI)));
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
BasicBlock *BB = *MI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II){
Instruction *I = *II; // For each instruction... Add Annote
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I)));
}
}
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
// For each instruction... Add Annote
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}
unsigned MethodInfo::getValueSlot(const Value *V) {
@ -1116,7 +1112,7 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurBB = M->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
@ -1134,13 +1130,11 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
// Run through the function arguments and initialize their values...
assert(ArgVals.size() == M->getArgumentList().size() &&
assert(ArgVals.size() == M->asize() &&
"Invalid number of values passed to function invocation!");
unsigned i = 0;
for (Function::ArgumentListType::iterator AI = M->getArgumentList().begin(),
AE = M->getArgumentList().end(); AI != AE; ++AI, ++i) {
SetValue((Value*)*AI, ArgVals[i], StackFrame);
}
for (Function::aiterator AI = M->abegin(), E = M->aend(); AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
@ -1150,7 +1144,7 @@ bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
Instruction &I = *SF.CurInst++; // Increment before execute
if (Trace)
CW << "Run:" << I;
@ -1175,17 +1169,17 @@ bool Interpreter::executeInstruction() {
}
InInstruction = true;
if (I->isBinaryOp()) {
if (I.isBinaryOp()) {
executeBinaryInst(cast<BinaryOperator>(I), SF);
} else {
switch (I->getOpcode()) {
switch (I.getOpcode()) {
case Instruction::Not: executeNotInst(cast<UnaryOperator>(I),SF); break;
// Terminators
case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break;
case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break;
// Memory Instructions
case Instruction::Alloca:
case Instruction::Malloc: executeAllocInst((AllocationInst*)I, SF); break;
case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break;
case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break;
case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break;
case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break;
@ -1210,7 +1204,7 @@ bool Interpreter::executeInstruction() {
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
@ -1235,7 +1229,7 @@ void Interpreter::nextInstruction() { // Do the 'next' command
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
unsigned StackSize = ECStack.size();
// Step into the function...
if (executeInstruction()) {
@ -1308,8 +1302,8 @@ void Interpreter::printCurrentInstruction() {
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
WriteAsOperand(cout, ECStack.back().CurBB) << ":\n";
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
Instruction &I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
@ -1373,22 +1367,27 @@ void Interpreter::infoValue(const std::string &Name) {
//
void Interpreter::printStackFrame(int FrameNo = -1) {
if (FrameNo == -1) FrameNo = CurFrame;
Function *Func = ECStack[FrameNo].CurMethod;
const Type *RetTy = Func->getReturnType();
Function *F = ECStack[FrameNo].CurMethod;
const Type *RetTy = F->getReturnType();
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
<< (Value*)RetTy << " \"" << Func->getName() << "\"(";
<< (Value*)RetTy << " \"" << F->getName() << "\"(";
Function::ArgumentListType &Args = Func->getArgumentList();
for (unsigned i = 0; i < Args.size(); ++i) {
unsigned i = 0;
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
if (i != 0) cout << ", ";
CW << (Value*)Args[i] << "=";
CW << *I << "=";
printValue(((Value*)Args[i])->getType(),
getOperandValue((Value*)Args[i], ECStack[FrameNo]));
printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
}
cout << ")\n";
CW << *(ECStack[FrameNo].CurInst-(FrameNo != int(ECStack.size()-1)));
if (FrameNo != int(ECStack.size()-1)) {
BasicBlock::iterator I = ECStack[FrameNo].CurInst;
CW << --I;
} else {
CW << *ECStack[FrameNo].CurInst;
}
}