MEGAPATCH checkin.

For details, See: docs/2002-06-25-MegaPatchInfo.txt


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2778 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2002-06-25 16:13:21 +00:00
parent 18961504fc
commit 0b12b5f50e
26 changed files with 654 additions and 726 deletions

View File

@@ -15,7 +15,7 @@
static Statistic<> NumRemoved("globaldce\t- Number of global values removed");
static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
static bool RemoveUnreachableFunctions(Module &M, CallGraph &CallGraph) {
// Calculate which functions are reachable from the external functions in the
// call graph.
//
@@ -27,10 +27,10 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
// The second pass removes the functions that need to be removed.
//
std::vector<CallGraphNode*> FunctionsToDelete; // Track unused functions
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
CallGraphNode *N = CallGraph[*I];
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
CallGraphNode *N = CallGraph[I];
if (!ReachableNodes.count(N)) { // Not reachable??
(*I)->dropAllReferences();
I->dropAllReferences();
N->removeAllCalledMethods();
FunctionsToDelete.push_back(N);
++NumRemoved;
@@ -50,17 +50,16 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
return true;
}
static bool RemoveUnreachableGlobalVariables(Module *M) {
static bool RemoveUnreachableGlobalVariables(Module &M) {
bool Changed = false;
// Eliminate all global variables that are unused, and that are internal, or
// do not have an initializer.
//
for (Module::giterator I = M->gbegin(); I != M->gend(); )
if (!(*I)->use_empty() ||
((*I)->hasExternalLinkage() && (*I)->hasInitializer()))
for (Module::giterator I = M.gbegin(); I != M.gend(); )
if (!I->use_empty() || (I->hasExternalLinkage() && I->hasInitializer()))
++I; // Cannot eliminate global variable
else {
delete M->getGlobalList().remove(I);
I = M.getGlobalList().erase(I);
++NumRemoved;
Changed = true;
}
@@ -74,7 +73,7 @@ namespace {
// run - Do the GlobalDCE pass on the specified module, optionally updating
// the specified callgraph to reflect the changes.
//
bool run(Module *M) {
bool run(Module &M) {
return RemoveUnreachableFunctions(M, getAnalysis<CallGraph>()) |
RemoveUnreachableGlobalVariables(M);
}

View File

@@ -17,10 +17,10 @@ static Statistic<> NumChanged("internalize\t- Number of functions internal'd");
class InternalizePass : public Pass {
const char *getPassName() const { return "Internalize Functions"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
bool FoundMain = false; // Look for a function named main...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if ((*I)->getName() == "main" && !(*I)->isExternal()) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->getName() == "main" && !I->isExternal()) {
FoundMain = true;
break;
}
@@ -30,10 +30,10 @@ class InternalizePass : public Pass {
bool Changed = false;
// Found a main function, mark all functions not named main as internal.
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if ((*I)->getName() != "main" && // Leave the main function external
!(*I)->isExternal()) { // Function must be defined here
(*I)->setInternalLinkage(true);
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->getName() != "main" && // Leave the main function external
!I->isExternal()) { // Function must be defined here
I->setInternalLinkage(true);
Changed = true;
++NumChanged;
}

View File

@@ -95,7 +95,7 @@ const Type *MutateStructTypes::ConvertType(const Type *Ty) {
assert(DestTy && "Type didn't get created!?!?");
// Refine our little placeholder value into a real type...
cast<DerivedType>(PlaceHolder.get())->refineAbstractTypeTo(DestTy);
((DerivedType*)PlaceHolder.get())->refineAbstractTypeTo(DestTy);
TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
return PlaceHolder.get();
@@ -139,9 +139,9 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
// Ignore null values and simple constants..
if (V == 0) return 0;
if (Constant *CPV = dyn_cast<Constant>(V)) {
if (const Constant *CPV = dyn_cast<Constant>(V)) {
if (V->getType()->isPrimitiveType())
return CPV;
return (Value*)CPV;
if (isa<ConstantPointerNull>(CPV))
return ConstantPointerNull::get(
@@ -150,11 +150,11 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
}
// Check to see if this is an out of function reference first...
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Check to see if the value is in the map...
map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
if (I == GlobalMap.end())
return GV; // Not mapped, just return value itself
return (Value*)GV; // Not mapped, just return value itself
return I->second;
}
@@ -221,7 +221,7 @@ void MutateStructTypes::setTransforms(const TransformsType &XForm) {
// types...
//
const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
cast<DerivedType>(OldTypeStub)->refineAbstractTypeTo(NSTy);
((DerivedType*)OldTypeStub)->refineAbstractTypeTo(NSTy);
// Add the transformation to the Transforms map.
Transforms.insert(std::make_pair(OldTy,
@@ -239,52 +239,46 @@ void MutateStructTypes::clearTransforms() {
"Local Value Map should always be empty between transformations!");
}
// doInitialization - This loops over global constants defined in the
// processGlobals - This loops over global constants defined in the
// module, converting them to their new type.
//
void MutateStructTypes::processGlobals(Module *M) {
void MutateStructTypes::processGlobals(Module &M) {
// Loop through the functions in the module and create a new version of the
// function to contained the transformed code. Don't use an iterator, because
// we will be adding values to the end of the vector, and it could be
// reallocated. Also, we don't want to process the values that we add.
// function to contained the transformed code. Also, be careful to not
// process the values that we add.
//
unsigned NumFunctions = M->size();
for (unsigned i = 0; i < NumFunctions; ++i) {
Function *Meth = M->begin()[i];
if (!Meth->isExternal()) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
const FunctionType *NewMTy =
cast<FunctionType>(ConvertType(Meth->getFunctionType()));
cast<FunctionType>(ConvertType(I->getFunctionType()));
// Create a new function to put stuff into...
Function *NewMeth = new Function(NewMTy, Meth->hasInternalLinkage(),
Meth->getName());
if (Meth->hasName())
Meth->setName("OLD."+Meth->getName());
Function *NewMeth = new Function(NewMTy, I->hasInternalLinkage(),
I->getName());
if (I->hasName())
I->setName("OLD."+I->getName());
// Insert the new function into the function list... to be filled in later
M->getFunctionList().push_back(NewMeth);
M.getFunctionList().push_back(NewMeth);
// Keep track of the association...
GlobalMap[Meth] = NewMeth;
GlobalMap[I] = NewMeth;
}
}
// TODO: HANDLE GLOBAL VARIABLES
// Remap the symbol table to refer to the types in a nice way
//
if (M->hasSymbolTable()) {
SymbolTable *ST = M->getSymbolTable();
if (SymbolTable *ST = M.getSymbolTable()) {
SymbolTable::iterator I = ST->find(Type::TypeTy);
if (I != ST->end()) { // Get the type plane for Type's
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator TI = Plane.begin(), TE = Plane.end();
TI != TE; ++TI) {
// This is gross, I'm reaching right into a symbol table and mucking
// around with it's internals... but oh well.
// FIXME: This is gross, I'm reaching right into a symbol table and
// mucking around with it's internals... but oh well.
//
TI->second = cast<Type>(ConvertType(cast<Type>(TI->second)));
TI->second = (Value*)cast<Type>(ConvertType(cast<Type>(TI->second)));
}
}
}
@@ -293,20 +287,20 @@ void MutateStructTypes::processGlobals(Module *M) {
// removeDeadGlobals - For this pass, all this does is remove the old versions
// of the functions and global variables that we no longer need.
void MutateStructTypes::removeDeadGlobals(Module *M) {
void MutateStructTypes::removeDeadGlobals(Module &M) {
// Prepare for deletion of globals by dropping their interdependencies...
for(Module::iterator I = M->begin(); I != M->end(); ++I) {
if (GlobalMap.find(*I) != GlobalMap.end())
(*I)->Function::dropAllReferences();
for(Module::iterator I = M.begin(); I != M.end(); ++I) {
if (GlobalMap.find(I) != GlobalMap.end())
I->dropAllReferences();
}
// Run through and delete the functions and global variables...
#if 0 // TODO: HANDLE GLOBAL VARIABLES
M->getGlobalList().delete_span(M->gbegin(), M->gbegin()+NumGVars/2);
M->getGlobalList().delete_span(M.gbegin(), M.gbegin()+NumGVars/2);
#endif
for(Module::iterator I = M->begin(); I != M->end();) {
if (GlobalMap.find(*I) != GlobalMap.end())
delete M->getFunctionList().remove(I);
for(Module::iterator I = M.begin(); I != M.end();) {
if (GlobalMap.find(I) != GlobalMap.end())
I = M.getFunctionList().erase(I);
else
++I;
}
@@ -326,46 +320,43 @@ void MutateStructTypes::transformFunction(Function *m) {
Function *NewMeth = cast<Function>(GMI->second);
// Okay, first order of business, create the arguments...
for (unsigned i = 0, e = M->getArgumentList().size(); i != e; ++i) {
const Argument *OFA = M->getArgumentList()[i];
Argument *NFA = new Argument(ConvertType(OFA->getType()), OFA->getName());
for (Function::aiterator I = m->abegin(), E = m->aend(); I != E; ++I) {
Argument *NFA = new Argument(ConvertType(I->getType()), I->getName());
NewMeth->getArgumentList().push_back(NFA);
LocalValueMap[OFA] = NFA; // Keep track of value mapping
LocalValueMap[I] = NFA; // Keep track of value mapping
}
// Loop over all of the basic blocks copying instructions over...
for (Function::const_iterator BBI = M->begin(), BBE = M->end(); BBI != BBE;
++BBI) {
for (Function::const_iterator BB = M->begin(), BBE = M->end(); BB != BBE;
++BB) {
// Create a new basic block and establish a mapping between the old and new
const BasicBlock *BB = *BBI;
BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
NewMeth->getBasicBlocks().push_back(NewBB); // Add block to function
NewMeth->getBasicBlockList().push_back(NewBB); // Add block to function
// Copy over all of the instructions in the basic block...
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
const Instruction *I = *II; // Get the current instruction...
const Instruction &I = *II; // Get the current instruction...
Instruction *NewI = 0;
switch (I->getOpcode()) {
switch (I.getOpcode()) {
// Terminator Instructions
case Instruction::Ret:
NewI = new ReturnInst(
ConvertValue(cast<ReturnInst>(I)->getReturnValue()));
ConvertValue(cast<ReturnInst>(I).getReturnValue()));
break;
case Instruction::Br: {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isConditional()) {
const BranchInst &BI = cast<BranchInst>(I);
if (BI.isConditional()) {
NewI =
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))),
cast<BasicBlock>(ConvertValue(BI->getSuccessor(1))),
ConvertValue(BI->getCondition()));
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))),
cast<BasicBlock>(ConvertValue(BI.getSuccessor(1))),
ConvertValue(BI.getCondition()));
} else {
NewI =
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))));
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))));
}
break;
}
@@ -375,8 +366,8 @@ void MutateStructTypes::transformFunction(Function *m) {
// Unary Instructions
case Instruction::Not:
NewI = UnaryOperator::create((Instruction::UnaryOps)I->getOpcode(),
ConvertValue(I->getOperand(0)));
NewI = UnaryOperator::create((Instruction::UnaryOps)I.getOpcode(),
ConvertValue(I.getOperand(0)));
break;
// Binary Instructions
@@ -397,41 +388,41 @@ void MutateStructTypes::transformFunction(Function *m) {
case Instruction::SetGE:
case Instruction::SetLT:
case Instruction::SetGT:
NewI = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
ConvertValue(I->getOperand(0)),
ConvertValue(I->getOperand(1)));
NewI = BinaryOperator::create((Instruction::BinaryOps)I.getOpcode(),
ConvertValue(I.getOperand(0)),
ConvertValue(I.getOperand(1)));
break;
case Instruction::Shr:
case Instruction::Shl:
NewI = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
ConvertValue(I->getOperand(0)),
ConvertValue(I->getOperand(1)));
NewI = new ShiftInst(cast<ShiftInst>(I).getOpcode(),
ConvertValue(I.getOperand(0)),
ConvertValue(I.getOperand(1)));
break;
// Memory Instructions
case Instruction::Alloca:
NewI =
new AllocaInst(ConvertType(I->getType()),
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
new AllocaInst(ConvertType(I.getType()),
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
break;
case Instruction::Malloc:
NewI =
new MallocInst(ConvertType(I->getType()),
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
new MallocInst(ConvertType(I.getType()),
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
break;
case Instruction::Free:
NewI = new FreeInst(ConvertValue(I->getOperand(0)));
NewI = new FreeInst(ConvertValue(I.getOperand(0)));
break;
case Instruction::Load:
case Instruction::Store:
case Instruction::GetElementPtr: {
const MemAccessInst *MAI = cast<MemAccessInst>(I);
vector<Value*> Indices(MAI->idx_begin(), MAI->idx_end());
const Value *Ptr = MAI->getPointerOperand();
const MemAccessInst &MAI = cast<MemAccessInst>(I);
vector<Value*> Indices(MAI.idx_begin(), MAI.idx_end());
const Value *Ptr = MAI.getPointerOperand();
Value *NewPtr = ConvertValue(Ptr);
if (!Indices.empty()) {
const Type *PTy = cast<PointerType>(Ptr->getType())->getElementType();
@@ -441,7 +432,7 @@ void MutateStructTypes::transformFunction(Function *m) {
if (isa<LoadInst>(I)) {
NewI = new LoadInst(NewPtr, Indices);
} else if (isa<StoreInst>(I)) {
NewI = new StoreInst(ConvertValue(I->getOperand(0)), NewPtr, Indices);
NewI = new StoreInst(ConvertValue(I.getOperand(0)), NewPtr, Indices);
} else if (isa<GetElementPtrInst>(I)) {
NewI = new GetElementPtrInst(NewPtr, Indices);
} else {
@@ -452,23 +443,23 @@ void MutateStructTypes::transformFunction(Function *m) {
// Miscellaneous Instructions
case Instruction::PHINode: {
const PHINode *OldPN = cast<PHINode>(I);
PHINode *PN = new PHINode(ConvertType(I->getType()));
for (unsigned i = 0; i < OldPN->getNumIncomingValues(); ++i)
PN->addIncoming(ConvertValue(OldPN->getIncomingValue(i)),
cast<BasicBlock>(ConvertValue(OldPN->getIncomingBlock(i))));
const PHINode &OldPN = cast<PHINode>(I);
PHINode *PN = new PHINode(ConvertType(OldPN.getType()));
for (unsigned i = 0; i < OldPN.getNumIncomingValues(); ++i)
PN->addIncoming(ConvertValue(OldPN.getIncomingValue(i)),
cast<BasicBlock>(ConvertValue(OldPN.getIncomingBlock(i))));
NewI = PN;
break;
}
case Instruction::Cast:
NewI = new CastInst(ConvertValue(I->getOperand(0)),
ConvertType(I->getType()));
NewI = new CastInst(ConvertValue(I.getOperand(0)),
ConvertType(I.getType()));
break;
case Instruction::Call: {
Value *Meth = ConvertValue(I->getOperand(0));
Value *Meth = ConvertValue(I.getOperand(0));
vector<Value*> Operands;
for (unsigned i = 1; i < I->getNumOperands(); ++i)
Operands.push_back(ConvertValue(I->getOperand(i)));
for (unsigned i = 1; i < I.getNumOperands(); ++i)
Operands.push_back(ConvertValue(I.getOperand(i)));
NewI = new CallInst(Meth, Operands);
break;
}
@@ -478,11 +469,11 @@ void MutateStructTypes::transformFunction(Function *m) {
break;
}
NewI->setName(I->getName());
NewI->setName(I.getName());
NewBB->getInstList().push_back(NewI);
// Check to see if we had to make a placeholder for this value...
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(I);
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(&I);
if (LVMI != LocalValueMap.end()) {
// Yup, make sure it's a placeholder...
Instruction *I = cast<Instruction>(LVMI->second);
@@ -495,7 +486,7 @@ void MutateStructTypes::transformFunction(Function *m) {
// Keep track of the fact the the local implementation of this instruction
// is NewI.
LocalValueMap[I] = NewI;
LocalValueMap[&I] = NewI;
}
}
@@ -503,11 +494,11 @@ void MutateStructTypes::transformFunction(Function *m) {
}
bool MutateStructTypes::run(Module *M) {
bool MutateStructTypes::run(Module &M) {
processGlobals(M);
for_each(M->begin(), M->end(),
bind_obj(this, &MutateStructTypes::transformFunction));
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
transformFunction(I);
removeDeadGlobals(M);
return true;

View File

@@ -13,8 +13,6 @@
#include "llvm/Transforms/Utils/CloneFunction.h"
#include "llvm/Analysis/DataStructureGraph.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
@@ -23,7 +21,6 @@
#include "llvm/Constants.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Argument.h"
#include "Support/DepthFirstIterator.h"
#include "Support/STLExtras.h"
#include <algorithm>
@@ -62,9 +59,9 @@ const Type *POINTERTYPE;
static TargetData TargetData("test");
static const Type *getPointerTransformedType(const Type *Ty) {
if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
return POINTERTYPE;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
vector<const Type *> NewElTypes;
NewElTypes.reserve(STy->getElementTypes().size());
for (StructType::ElementTypes::const_iterator
@@ -72,7 +69,7 @@ static const Type *getPointerTransformedType(const Type *Ty) {
E = STy->getElementTypes().end(); I != E; ++I)
NewElTypes.push_back(getPointerTransformedType(*I));
return StructType::get(NewElTypes);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return ArrayType::get(getPointerTransformedType(ATy->getElementType()),
ATy->getNumElements());
} else {
@@ -233,7 +230,7 @@ namespace {
return Result;
}
bool run(Module *M);
bool run(Module &M);
// getAnalysisUsage - This function requires data structure information
// to be able to see what is pool allocatable.
@@ -273,7 +270,7 @@ namespace {
// specified module and update the Pool* instance variables to point to
// them.
//
void addPoolPrototypes(Module *M);
void addPoolPrototypes(Module &M);
// CreatePools - Insert instructions into the function we are processing to
@@ -410,12 +407,13 @@ class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
return 0;
}
BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
BasicBlock *BB = I->getParent();
BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
BB->getInstList().replaceWith(RI, New);
XFormMap[I] = New;
return RI;
BasicBlock::iterator ReplaceInstWith(Instruction &I, Instruction *New) {
BasicBlock *BB = I.getParent();
BasicBlock::iterator RI = &I;
BB->getInstList().remove(RI);
BB->getInstList().insert(RI, New);
XFormMap[&I] = New;
return New;
}
Instruction *createPoolBaseInstruction(Value *PtrVal) {
@@ -471,36 +469,36 @@ public:
// NewInstructionCreator instance...
//===--------------------------------------------------------------------===//
void visitGetElementPtrInst(GetElementPtrInst *I) {
void visitGetElementPtrInst(GetElementPtrInst &I) {
assert(0 && "Cannot transform get element ptr instructions yet!");
}
// Replace the load instruction with a new one.
void visitLoadInst(LoadInst *I) {
void visitLoadInst(LoadInst &I) {
vector<Instruction *> BeforeInsts;
// Cast our index to be a UIntTy so we can use it to index into the pool...
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Type::UIntTy, I->getOperand(0)->getName());
Type::UIntTy, I.getOperand(0)->getName());
BeforeInsts.push_back(Index);
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(0)));
// Include the pool base instruction...
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(0));
BeforeInsts.push_back(PoolBase);
Instruction *IdxInst =
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index,
I->getName()+".idx");
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index,
I.getName()+".idx");
BeforeInsts.push_back(IdxInst);
vector<Value*> Indices(I->idx_begin(), I->idx_end());
vector<Value*> Indices(I.idx_begin(), I.idx_end());
Indices[0] = IdxInst;
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
I->getName()+".addr");
I.getName()+".addr");
BeforeInsts.push_back(Address);
Instruction *NewLoad = new LoadInst(Address, I->getName());
Instruction *NewLoad = new LoadInst(Address, I.getName());
// Replace the load instruction with the new load instruction...
BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
@@ -512,57 +510,58 @@ public:
// If not yielding a pool allocated pointer, use the new load value as the
// value in the program instead of the old load value...
//
if (!getScalar(I))
I->replaceAllUsesWith(NewLoad);
if (!getScalar(&I))
I.replaceAllUsesWith(NewLoad);
}
// Replace the store instruction with a new one. In the store instruction,
// the value stored could be a pointer type, meaning that the new store may
// have to change one or both of it's operands.
//
void visitStoreInst(StoreInst *I) {
assert(getScalar(I->getOperand(1)) &&
void visitStoreInst(StoreInst &I) {
assert(getScalar(I.getOperand(1)) &&
"Store inst found only storing pool allocated pointer. "
"Not imp yet!");
Value *Val = I->getOperand(0); // The value to store...
Value *Val = I.getOperand(0); // The value to store...
// Check to see if the value we are storing is a data structure pointer...
//if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
if (isa<PointerType>(I->getOperand(0)->getType()))
//if (const ScalarInfo *ValScalar = getScalar(I.getOperand(0)))
if (isa<PointerType>(I.getOperand(0)->getType()))
Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(1));
// Cast our index to be a UIntTy so we can use it to index into the pool...
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Type::UIntTy, I->getOperand(1)->getName());
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
Type::UIntTy, I.getOperand(1)->getName());
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(1)));
// Instructions to add after the Index...
vector<Instruction*> AfterInsts;
Instruction *IdxInst =
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, "idx");
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index, "idx");
AfterInsts.push_back(IdxInst);
vector<Value*> Indices(I->idx_begin(), I->idx_end());
vector<Value*> Indices(I.idx_begin(), I.idx_end());
Indices[0] = IdxInst;
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
I->getName()+"storeaddr");
I.getName()+"storeaddr");
AfterInsts.push_back(Address);
Instruction *NewStore = new StoreInst(Val, Address);
AfterInsts.push_back(NewStore);
if (Val != I->getOperand(0)) // Value stored was a pointer?
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
if (Val != I.getOperand(0)) // Value stored was a pointer?
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I.getOperand(0)));
// Replace the store instruction with the cast instruction...
BasicBlock::iterator II = ReplaceInstWith(I, Index);
// Add the pool base calculator instruction before the index...
II = Index->getParent()->getInstList().insert(II, PoolBase)+2;
II = ++Index->getParent()->getInstList().insert(II, PoolBase);
++II;
// Add the instructions that go after the index...
Index->getParent()->getInstList().insert(II, AfterInsts.begin(),
@@ -571,42 +570,42 @@ public:
// Create call to poolalloc for every malloc instruction
void visitMallocInst(MallocInst *I) {
const ScalarInfo &SCI = getScalarRef(I);
void visitMallocInst(MallocInst &I) {
const ScalarInfo &SCI = getScalarRef(&I);
vector<Value*> Args;
CallInst *Call;
if (!I->isArrayAllocation()) {
if (!I.isArrayAllocation()) {
Args.push_back(SCI.Pool.Handle);
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I.getName());
} else {
Args.push_back(I->getArraySize());
Args.push_back(I.getArraySize());
Args.push_back(SCI.Pool.Handle);
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName());
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I.getName());
}
ReplaceInstWith(I, Call);
}
// Convert a call to poolfree for every free instruction...
void visitFreeInst(FreeInst *I) {
void visitFreeInst(FreeInst &I) {
// Create a new call to poolfree before the free instruction
vector<Value*> Args;
Args.push_back(Constant::getNullValue(POINTERTYPE));
Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
Args.push_back(getScalarRef(I.getOperand(0)).Pool.Handle);
Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
ReplaceInstWith(I, NewCall);
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I.getOperand(0)));
}
// visitCallInst - Create a new call instruction with the extra arguments for
// all of the memory pools that the call needs.
//
void visitCallInst(CallInst *I) {
TransformFunctionInfo &TI = CallMap[I];
void visitCallInst(CallInst &I) {
TransformFunctionInfo &TI = CallMap[&I];
// Start with all of the old arguments...
vector<Value*> Args(I->op_begin()+1, I->op_end());
vector<Value*> Args(I.op_begin()+1, I.op_end());
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
// Replace all of the pointer arguments with our new pointer typed values.
@@ -618,7 +617,7 @@ public:
}
Function *NF = PoolAllocator.getTransformedFunction(TI);
Instruction *NewCall = new CallInst(NF, Args, I->getName());
Instruction *NewCall = new CallInst(NF, Args, I.getName());
ReplaceInstWith(I, NewCall);
// Keep track of the mapping of operands so that we can resolve them to real
@@ -627,7 +626,7 @@ public:
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
if (TI.ArgInfo[i].ArgNo != -1)
ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
I->getOperand(TI.ArgInfo[i].ArgNo+1)));
I.getOperand(TI.ArgInfo[i].ArgNo+1)));
else
RetVal = 0; // If returning a pointer, don't change retval...
@@ -635,47 +634,47 @@ public:
// instead of the old call...
//
if (RetVal)
I->replaceAllUsesWith(RetVal);
I.replaceAllUsesWith(RetVal);
}
// visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
// nodes...
//
void visitPHINode(PHINode *PN) {
void visitPHINode(PHINode &PN) {
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
PHINode *NewPhi = new PHINode(POINTERTYPE, PN.getName());
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
NewPhi->addIncoming(DummyVal, PN.getIncomingBlock(i));
ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
PN->getIncomingValue(i)));
PN.getIncomingValue(i)));
}
ReplaceInstWith(PN, NewPhi);
}
// visitReturnInst - Replace ret instruction with a new return...
void visitReturnInst(ReturnInst *I) {
void visitReturnInst(ReturnInst &I) {
Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE));
ReplaceInstWith(I, Ret);
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I.getOperand(0)));
}
// visitSetCondInst - Replace a conditional test instruction with a new one
void visitSetCondInst(SetCondInst *SCI) {
BinaryOperator *I = (BinaryOperator*)SCI;
void visitSetCondInst(SetCondInst &SCI) {
BinaryOperator &I = (BinaryOperator&)SCI;
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
DummyVal, I->getName());
BinaryOperator *New = BinaryOperator::create(I.getOpcode(), DummyVal,
DummyVal, I.getName());
ReplaceInstWith(I, New);
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I.getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I.getOperand(1)));
// Make sure branches refer to the new condition...
I->replaceAllUsesWith(New);
I.replaceAllUsesWith(New);
}
void visitInstruction(Instruction *I) {
void visitInstruction(Instruction &I) {
cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
}
};
@@ -729,8 +728,8 @@ public:
}
#ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR
void visitFunction(Function *F) {
cerr << "Pool Load Elim '" << F->getName() << "'\t";
void visitFunction(Function &F) {
cerr << "Pool Load Elim '" << F.getName() << "'\t";
}
~PoolBaseLoadEliminator() {
unsigned Total = Eliminated+Remaining;
@@ -745,7 +744,7 @@ public:
// local transformation, we reset all of our state when we enter a new basic
// block.
//
void visitBasicBlock(BasicBlock *) {
void visitBasicBlock(BasicBlock &) {
PoolDescMap.clear(); // Forget state.
}
@@ -754,25 +753,25 @@ public:
// indicating that we have a value available to recycle next time we see the
// poolbase of this instruction being loaded.
//
void visitLoadInst(LoadInst *LI) {
Value *LoadAddr = LI->getPointerOperand();
void visitLoadInst(LoadInst &LI) {
Value *LoadAddr = LI.getPointerOperand();
map<Value*, LoadInst*>::iterator VIt = PoolDescMap.find(LoadAddr);
if (VIt != PoolDescMap.end()) { // We already have a value for this load?
LI->replaceAllUsesWith(VIt->second); // Make the current load dead
LI.replaceAllUsesWith(VIt->second); // Make the current load dead
++Eliminated;
} else {
// This load might not be a load of a pool pointer, check to see if it is
if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
if (LI.getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) !=
PoolDescValues.end()) {
assert("Make sure it's a load of the pool base, not a chaining field" &&
LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
LI->getOperand(3) == Constant::getNullValue(Type::UByteTy));
LI.getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
LI.getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
LI.getOperand(3) == Constant::getNullValue(Type::UByteTy));
// If it is a load of a pool base, keep track of it for future reference
PoolDescMap.insert(make_pair(LoadAddr, LI));
PoolDescMap.insert(make_pair(LoadAddr, &LI));
++Remaining;
}
}
@@ -784,7 +783,7 @@ public:
// function might call one of these functions, so be conservative. Through
// more analysis, this could be improved in the future.
//
void visitCallInst(CallInst *) {
void visitCallInst(CallInst &) {
PoolDescMap.clear();
}
};
@@ -845,8 +844,9 @@ static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
NodeMapping);
} else {
// Figure out which node argument # ArgNo points to in the called graph.
Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
Function::aiterator AI = F->abegin();
std::advance(AI, TFI.ArgInfo[i].ArgNo);
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[AI],
NodeMapping);
}
LastArgNo = TFI.ArgInfo[i].ArgNo;
@@ -923,9 +923,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
Done = false;
}
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
Argument *Arg = Func->getArgumentList()[i];
if (isa<PointerType>(Arg->getType())) {
unsigned i = 0;
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I,++i){
if (isa<PointerType>(I->getType())) {
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
// We DO transform this arg... skip all possible entries for argument
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
@@ -989,9 +989,10 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
if (i == 0) // Only process retvals once (performance opt)
markReachableNodes(CalledDS.getRetNodes(), ReachableNodes);
} else { // If it's an argument value...
Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo];
if (isa<PointerType>(Arg->getType()))
markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes);
Function::aiterator AI = Func->abegin();
std::advance(AI, ArgInfo[i].ArgNo);
if (isa<PointerType>(AI->getType()))
markReachableNodes(CalledDS.getValueMap()[AI], ReachableNodes);
}
}
@@ -1035,9 +1036,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
}
}
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
Argument *Arg = Func->getArgumentList()[i];
if (isa<PointerType>(Arg->getType())) {
i = 0;
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I, ++i)
if (isa<PointerType>(I->getType())) {
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
// We DO transform this arg... skip all possible entries for argument
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
@@ -1045,13 +1046,13 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
} else {
// This should generalize to any number of nodes, just see if any are
// reachable.
assert(CalledDS.getValueMap()[Arg].size() == 1 &&
assert(CalledDS.getValueMap()[I].size() == 1 &&
"Only handle case where pointing to one node so far!");
// If the arg is not marked as being passed in, but it NEEDS to
// be transformed, then make it known now.
//
DSNode *N = CalledDS.getValueMap()[Arg][0].Node;
DSNode *N = CalledDS.getValueMap()[I][0].Node;
if (ReachableNodes.count(N)) {
#ifdef DEBUG_TRANSFORM_PROGRESS
cerr << "ensure dependant arguments adds for arg #" << i << "\n";
@@ -1063,7 +1064,6 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
}
}
}
}
}
@@ -1222,7 +1222,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
if (PoolDescs.count(RetNode.Node)) {
// Loop over all of the basic blocks, adding return instructions...
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
InstToFix.push_back(RI);
}
}
@@ -1246,7 +1246,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
#ifdef DEBUG_TRANSFORM_PROGRESS
for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
cerr << "Fixing: " << InstToFix[i];
NIC.visit(InstToFix[i]);
NIC.visit(*InstToFix[i]);
}
#else
NIC.visit(InstToFix.begin(), InstToFix.end());
@@ -1264,16 +1264,15 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
//
FunctionType::ParamTypes::const_iterator TI =
F->getFunctionType()->getParamTypes().begin();
for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
E = F->getArgumentList().end(); I != E; ++I, ++TI) {
Argument *Arg = *I;
if (Arg->getType() != *TI) {
assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
Argument *NewArg = new Argument(*TI, Arg->getName());
XFormMap[Arg] = NewArg; // Map old arg into new arg...
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++TI) {
if (I->getType() != *TI) {
assert(isa<PointerType>(I->getType()) && *TI == POINTERTYPE);
Argument *NewArg = new Argument(*TI, I->getName());
XFormMap[I] = NewArg; // Map old arg into new arg...
// Replace the old argument and then delete it...
delete F->getArgumentList().replaceWith(I, NewArg);
I = F->getArgumentList().erase(I);
I = F->getArgumentList().insert(I, NewArg);
}
}
@@ -1366,9 +1365,9 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
const Argument *OFA = TFI.Func->getArgumentList()[i];
Argument *NFA = new Argument(OFA->getType(), OFA->getName());
for (Function::const_aiterator I = TFI.Func->abegin(), E = TFI.Func->aend();
I != E; ++I) {
Argument *NFA = new Argument(I->getType(), I->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
}
@@ -1457,11 +1456,13 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
#ifdef DEBUG_TRANSFORM_PROGRESS
cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
#endif
assert(ArgNo < NewFunc->getArgumentList().size() &&
assert(ArgNo < NewFunc->asize() &&
"Call already has pool arguments added??");
// Map the pool argument into the called function...
CalleeValue = NewFunc->getArgumentList()[ArgNo];
Function::aiterator AI = NewFunc->abegin();
std::advance(AI, ArgNo);
CalleeValue = AI;
break; // Found value, quit loop
}
@@ -1501,12 +1502,12 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
static unsigned countPointerTypes(const Type *Ty) {
if (isa<PointerType>(Ty)) {
return 1;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
unsigned Num = 0;
for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i)
Num += countPointerTypes(STy->getElementTypes()[i]);
return Num;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return countPointerTypes(ATy->getElementType());
} else {
assert(Ty->isPrimitiveType() && "Unknown derived type!");
@@ -1524,8 +1525,8 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// Find all of the return nodes in the function...
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (isa<ReturnInst>((*I)->getTerminator()))
ReturnNodes.push_back(*I);
if (isa<ReturnInst>(I->getTerminator()))
ReturnNodes.push_back(I);
#ifdef DEBUG_CREATE_POOLS
cerr << "Allocs that we are pool allocating:\n";
@@ -1595,11 +1596,10 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// The actual struct type could change each time through the loop, so it's
// NOT loop invariant.
StructType *PoolTy = cast<StructType>(PoolTyH.get());
const StructType *PoolTy = cast<StructType>(PoolTyH.get());
// Get the opaque type...
DerivedType *ElTy =
cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
DerivedType *ElTy = (DerivedType*)(PoolTy->getElementTypes()[p+1].get());
#ifdef DEBUG_CREATE_POOLS
cerr << "Refining " << ElTy << " of " << PoolTy << " to "
@@ -1653,7 +1653,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// Insert it before the return instruction...
BasicBlock *RetNode = ReturnNodes[EN];
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
RetNode->getInstList().insert(RetNode->end()--, Destroy);
}
}
@@ -1683,7 +1683,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
}
// Insert the entry node code into the entry block...
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
F->getEntryNode().getInstList().insert(++F->getEntryNode().begin(),
EntryNodeInsts.begin(),
EntryNodeInsts.end());
}
@@ -1692,45 +1692,43 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// addPoolPrototypes - Add prototypes for the pool functions to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
void PoolAllocate::addPoolPrototypes(Module &M) {
// Get poolinit function...
vector<const Type*> Args;
Args.push_back(Type::UIntTy); // Num bytes per element
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
PoolInit = M.getOrInsertFunction("poolinit", PoolInitTy);
// Get pooldestroy function...
Args.pop_back(); // Only takes a pool...
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
PoolDestroy = M.getOrInsertFunction("pooldestroy", PoolDestroyTy);
// Get the poolalloc function...
FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
PoolAlloc = M.getOrInsertFunction("poolalloc", PoolAllocTy);
// Get the poolfree function...
Args.push_back(POINTERTYPE); // Pointer to free
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
PoolFree = M.getOrInsertFunction("poolfree", PoolFreeTy);
Args[0] = Type::UIntTy; // Number of slots to allocate
FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true);
PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
PoolAllocArray = M.getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
}
bool PoolAllocate::run(Module *M) {
bool PoolAllocate::run(Module &M) {
addPoolPrototypes(M);
CurModule = M;
CurModule = &M;
DS = &getAnalysis<DataStructure>();
bool Changed = false;
// We cannot use an iterator here because it will get invalidated when we add
// functions to the module later...
for (unsigned i = 0; i != M->size(); ++i)
if (!M->getFunctionList()[i]->isExternal()) {
Changed |= processFunction(M->getFunctionList()[i]);
for (Module::iterator I = M.begin(); I != M.end(); ++I)
if (!I->isExternal()) {
Changed |= processFunction(I);
if (Changed) {
cerr << "Only processing one function\n";
break;

View File

@@ -32,7 +32,7 @@ namespace {
const char *getPassName() const { return "Simple Struct Mutation"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
setTransforms(getTransforms(M, CurrentXForm));
bool Changed = MutateStructTypes::run(M);
clearTransforms();
@@ -49,7 +49,7 @@ namespace {
}
private:
TransformsType getTransforms(Module *M, enum Transform);
TransformsType getTransforms(Module &M, enum Transform);
};
} // end anonymous namespace
@@ -124,7 +124,7 @@ static inline void GetTransformation(const StructType *ST,
SimpleStructMutation::TransformsType
SimpleStructMutation::getTransforms(Module *M, enum Transform XForm) {
SimpleStructMutation::getTransforms(Module &, enum Transform XForm) {
// We need to know which types to modify, and which types we CAN'T modify
// TODO: Do symbol tables as well