mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
* Implement dominator based loop identification
* Implement cleaner induction variable identification git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1359 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
ee6826b5e3
commit
0bbe58f073
53
include/llvm/Analysis/InductionVariable.h
Normal file
53
include/llvm/Analysis/InductionVariable.h
Normal file
@ -0,0 +1,53 @@
|
||||
//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
|
||||
//
|
||||
// This interface is used to identify and classify induction variables that
|
||||
// exist in the program. Induction variables must contain a PHI node that
|
||||
// exists in a loop header. Because of this, they are identified an managed by
|
||||
// this PHI node.
|
||||
//
|
||||
// Induction variables are classified into a type. Knowing that an induction
|
||||
// variable is of a specific type can constrain the values of the start and
|
||||
// step. For example, a SimpleLinear induction variable must have a start and
|
||||
// step values that are constants.
|
||||
//
|
||||
// Induction variables can be created with or without loop information. If no
|
||||
// loop information is available, induction variables cannot be recognized to be
|
||||
// more than SimpleLinear variables.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_INDUCTIONVARIABLE_H
|
||||
#define LLVM_ANALYSIS_INDUCTIONVARIABLE_H
|
||||
|
||||
class Value;
|
||||
class PHINode;
|
||||
class Instruction;
|
||||
namespace cfg { class LoopInfo; class Loop; }
|
||||
|
||||
class InductionVariable {
|
||||
public:
|
||||
enum iType { // Identify the type of this induction variable
|
||||
Cannonical, // Starts at 0, counts by 1
|
||||
SimpleLinear, // Simple linear: Constant start, constant step
|
||||
Linear, // General linear: loop invariant start, and step
|
||||
Unknown, // Unknown type. Start & Step are null
|
||||
} InductionType;
|
||||
|
||||
Value *Start, *Step; // Start and step expressions for this indvar
|
||||
PHINode *Phi; // The PHI node that corresponds to this indvar
|
||||
public:
|
||||
|
||||
// Create an induction variable for the specified value. If it is a PHI, and
|
||||
// if it's recognizable, classify it and fill in instance variables.
|
||||
//
|
||||
InductionVariable(Instruction *V, cfg::LoopInfo *LoopInfo = 0);
|
||||
|
||||
|
||||
// Classify Induction
|
||||
static enum iType Classify(const Value *Start, const Value *Step,
|
||||
const cfg::Loop *L = 0);
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
107
include/llvm/Analysis/LoopInfo.h
Normal file
107
include/llvm/Analysis/LoopInfo.h
Normal file
@ -0,0 +1,107 @@
|
||||
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator --------*- C++ -*--=//
|
||||
//
|
||||
// This file defines the LoopInfo class that is used to identify natural loops
|
||||
// and determine the loop depth of various nodes of the CFG. Note that the
|
||||
// loops identified may actually be several natural loops that share the same
|
||||
// header node... not just a single natural loop.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_LOOP_INFO_H
|
||||
#define LLVM_ANALYSIS_LOOP_INFO_H
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <set>
|
||||
class BasicBlock;
|
||||
|
||||
namespace cfg {
|
||||
class DominatorSet;
|
||||
class LoopInfo;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Loop class - Instances of this class are used to represent loops that are
|
||||
// detected in the flow graph
|
||||
//
|
||||
class Loop {
|
||||
Loop *ParentLoop;
|
||||
vector<const BasicBlock *> Blocks; // First entry is the header node
|
||||
vector<Loop*> SubLoops; // Loops contained entirely within this one
|
||||
unsigned LoopDepth; // Nesting depth of this loop
|
||||
|
||||
Loop(const Loop &); // DO NOT IMPLEMENT
|
||||
const Loop &operator=(const Loop &); // DO NOT IMPLEMENT
|
||||
public:
|
||||
|
||||
inline unsigned getLoopDepth() const { return LoopDepth; }
|
||||
inline const BasicBlock *getHeader() const { return Blocks.front(); }
|
||||
|
||||
// contains - Return true of the specified basic block is in this loop
|
||||
bool contains(const BasicBlock *BB) const;
|
||||
|
||||
// getSubLoops - Return the loops contained entirely within this loop
|
||||
inline const vector<Loop*> &getSubLoops() const { return SubLoops; }
|
||||
inline const vector<const BasicBlock*> &getBlocks() const { return Blocks; }
|
||||
|
||||
private:
|
||||
friend class LoopInfo;
|
||||
inline Loop(const BasicBlock *BB) { Blocks.push_back(BB); LoopDepth = 0; }
|
||||
|
||||
void setLoopDepth(unsigned Level) {
|
||||
LoopDepth = Level;
|
||||
for (unsigned i = 0; i < SubLoops.size(); ++i)
|
||||
SubLoops[i]->setLoopDepth(Level+1);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// LoopInfo - This class builds and contains all of the top level loop
|
||||
// structures in the specified method.
|
||||
//
|
||||
class LoopInfo {
|
||||
// BBMap - Mapping of basic blocks to the inner most loop they occur in
|
||||
map<const BasicBlock *, Loop*> BBMap;
|
||||
vector<Loop*> TopLevelLoops;
|
||||
public:
|
||||
// LoopInfo ctor - Calculate the natural loop information for a CFG
|
||||
LoopInfo(const DominatorSet &DS);
|
||||
|
||||
const vector<Loop*> &getTopLevelLoops() const { return TopLevelLoops; }
|
||||
|
||||
// getLoopFor - Return the inner most loop that BB lives in. If a basic block
|
||||
// is in no loop (for example the entry node), null is returned.
|
||||
//
|
||||
const Loop *getLoopFor(const BasicBlock *BB) const {
|
||||
map<const BasicBlock *, Loop*>::const_iterator I = BBMap.find(BB);
|
||||
return I != BBMap.end() ? I->second : 0;
|
||||
}
|
||||
inline const Loop *operator[](const BasicBlock *BB) const {
|
||||
return getLoopFor(BB);
|
||||
}
|
||||
|
||||
// getLoopDepth - Return the loop nesting level of the specified block...
|
||||
unsigned getLoopDepth(const BasicBlock *BB) const {
|
||||
const Loop *L = getLoopFor(BB);
|
||||
return L ? L->getLoopDepth() : 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// isLoopHeader - True if the block is a loop header node
|
||||
bool isLoopHeader(const BasicBlock *BB) const {
|
||||
return getLoopFor(BB)->getHeader() == BB;
|
||||
}
|
||||
// isLoopEnd - True if block jumps to loop entry
|
||||
bool isLoopEnd(const BasicBlock *BB) const;
|
||||
// isLoopExit - True if block is the loop exit
|
||||
bool isLoopExit(const BasicBlock *BB) const;
|
||||
#endif
|
||||
|
||||
private:
|
||||
Loop *ConsiderForLoop(const BasicBlock *BB, const DominatorSet &DS);
|
||||
};
|
||||
|
||||
} // End namespace cfg
|
||||
|
||||
#endif
|
138
lib/Analysis/InductionVariable.cpp
Normal file
138
lib/Analysis/InductionVariable.cpp
Normal file
@ -0,0 +1,138 @@
|
||||
//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
|
||||
//
|
||||
// This interface is used to identify and classify induction variables that
|
||||
// exist in the program. Induction variables must contain a PHI node that
|
||||
// exists in a loop header. Because of this, they are identified an managed by
|
||||
// this PHI node.
|
||||
//
|
||||
// Induction variables are classified into a type. Knowing that an induction
|
||||
// variable is of a specific type can constrain the values of the start and
|
||||
// step. For example, a SimpleLinear induction variable must have a start and
|
||||
// step values that are constants.
|
||||
//
|
||||
// Induction variables can be created with or without loop information. If no
|
||||
// loop information is available, induction variables cannot be recognized to be
|
||||
// more than SimpleLinear variables.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/InductionVariable.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/Expressions.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/ConstPoolVals.h"
|
||||
|
||||
using analysis::ExprType;
|
||||
|
||||
|
||||
static bool isLoopInvariant(const Value *V, const cfg::Loop *L) {
|
||||
if (isa<ConstPoolVal>(V) || isa<MethodArgument>(V) || isa<GlobalValue>(V))
|
||||
return true;
|
||||
|
||||
const Instruction *I = cast<Instruction>(V);
|
||||
const BasicBlock *BB = I->getParent();
|
||||
|
||||
return !L->contains(BB);
|
||||
}
|
||||
|
||||
enum InductionVariable::iType
|
||||
InductionVariable::Classify(const Value *Start, const Value *Step,
|
||||
const cfg::Loop *L = 0) {
|
||||
// Check for cannonical and simple linear expressions now...
|
||||
if (ConstPoolInt *CStart = dyn_cast<ConstPoolInt>(Start))
|
||||
if (ConstPoolInt *CStep = dyn_cast<ConstPoolInt>(Step)) {
|
||||
if (CStart->equalsInt(0) && CStep->equalsInt(1))
|
||||
return Cannonical;
|
||||
else
|
||||
return SimpleLinear;
|
||||
}
|
||||
|
||||
// Without loop information, we cannot do any better, so bail now...
|
||||
if (L == 0) return Unknown;
|
||||
|
||||
if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
|
||||
return Linear;
|
||||
return Unknown;
|
||||
}
|
||||
|
||||
// Create an induction variable for the specified value. If it is a PHI, and
|
||||
// if it's recognizable, classify it and fill in instance variables.
|
||||
//
|
||||
InductionVariable::InductionVariable(Instruction *V, cfg::LoopInfo *LoopInfo) {
|
||||
InductionType = Unknown; // Assume the worst
|
||||
|
||||
// If this instruction is not a PHINode, it can't be an induction variable.
|
||||
// Also, if the PHI node has more than two predecessors, we don't know how to
|
||||
// handle it.
|
||||
//
|
||||
Phi = dyn_cast<PHINode>(V);
|
||||
if (!Phi || Phi->getNumIncomingValues() != 2) return;
|
||||
|
||||
// If we have loop information, make sure that this PHI node is in the header
|
||||
// of a loop...
|
||||
//
|
||||
const cfg::Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
|
||||
if (L && L->getHeader() != Phi->getParent())
|
||||
return;
|
||||
|
||||
Value *V1 = Phi->getIncomingValue(0);
|
||||
Value *V2 = Phi->getIncomingValue(1);
|
||||
|
||||
if (L == 0) { // No loop information? Base everything on expression analysis
|
||||
ExprType E1 = analysis::ClassifyExpression(V1);
|
||||
ExprType E2 = analysis::ClassifyExpression(V2);
|
||||
|
||||
if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
|
||||
swap(E1, E2);
|
||||
|
||||
// E1 must be a constant incoming value, and E2 must be a linear expression
|
||||
// with respect to the PHI node.
|
||||
//
|
||||
if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
|
||||
E2.Var != Phi)
|
||||
return;
|
||||
|
||||
// Okay, we have found an induction variable. Save the start and step values
|
||||
const Type *ETy = Phi->getType();
|
||||
if (ETy->isPointerType()) ETy = Type::ULongTy;
|
||||
|
||||
Start = (Value*)(E1.Offset ? E1.Offset : ConstPoolInt::get(ETy, 0));
|
||||
Step = (Value*)(E2.Offset ? E2.Offset : ConstPoolInt::get(ETy, 0));
|
||||
} else {
|
||||
// Okay, at this point, we know that we have loop information...
|
||||
|
||||
// Make sure that V1 is the incoming value, and V2 is from the backedge of
|
||||
// the loop.
|
||||
if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
|
||||
swap(V1, V2);
|
||||
|
||||
Start = V1; // We know that Start has to be loop invariant...
|
||||
Step = 0;
|
||||
|
||||
if (V2 == Phi) { // referencing the PHI directly? Must have zero step
|
||||
Step = ConstPoolVal::getNullConstant(Phi->getType());
|
||||
} else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
|
||||
// TODO: This could be much better...
|
||||
if (I->getOpcode() == Instruction::Add) {
|
||||
if (I->getOperand(0) == Phi)
|
||||
Step = I->getOperand(1);
|
||||
else if (I->getOperand(1) == Phi)
|
||||
Step = I->getOperand(0);
|
||||
}
|
||||
}
|
||||
|
||||
if (Step == 0) { // Unrecognized step value...
|
||||
ExprType StepE = analysis::ClassifyExpression(V2);
|
||||
if (StepE.ExprTy != ExprType::Linear ||
|
||||
StepE.Var != Phi) return;
|
||||
|
||||
const Type *ETy = Phi->getType();
|
||||
if (ETy->isPointerType()) ETy = Type::ULongTy;
|
||||
Step = (Value*)(StepE.Offset ? StepE.Offset : ConstPoolInt::get(ETy, 0));
|
||||
}
|
||||
}
|
||||
|
||||
// Classify the induction variable type now...
|
||||
InductionType = InductionVariable::Classify(Start, Step, L);
|
||||
}
|
81
lib/Analysis/LoopInfo.cpp
Normal file
81
lib/Analysis/LoopInfo.cpp
Normal file
@ -0,0 +1,81 @@
|
||||
//===- LoopInfo.cpp - Natural Loop Calculator -------------------------------=//
|
||||
//
|
||||
// This file defines the LoopInfo class that is used to identify natural loops
|
||||
// and determine the loop depth of various nodes of the CFG. Note that the
|
||||
// loops identified may actually be several natural loops that share the same
|
||||
// header node... not just a single natural loop.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Support/DepthFirstIterator.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include <algorithm>
|
||||
|
||||
bool cfg::Loop::contains(const BasicBlock *BB) const {
|
||||
return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
|
||||
}
|
||||
|
||||
cfg::LoopInfo::LoopInfo(const DominatorSet &DS) {
|
||||
const BasicBlock *RootNode = DS.getRoot();
|
||||
|
||||
for (df_iterator<const BasicBlock*> NI = df_begin(RootNode),
|
||||
NE = df_end(RootNode); NI != NE; ++NI)
|
||||
if (Loop *L = ConsiderForLoop(*NI, DS))
|
||||
TopLevelLoops.push_back(L);
|
||||
|
||||
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
|
||||
TopLevelLoops[i]->setLoopDepth(1);
|
||||
}
|
||||
|
||||
cfg::Loop *cfg::LoopInfo::ConsiderForLoop(const BasicBlock *BB,
|
||||
const DominatorSet &DS) {
|
||||
if (BBMap.find(BB) != BBMap.end()) return 0; // Havn't processed this node?
|
||||
|
||||
vector<const BasicBlock *> TodoStack;
|
||||
|
||||
// Scan the predecessors of BB, checking to see if BB dominates any of
|
||||
// them.
|
||||
for (BasicBlock::pred_const_iterator I = BB->pred_begin(),
|
||||
E = BB->pred_end(); I != E; ++I)
|
||||
if (DS.dominates(BB, *I)) // If BB dominates it's predecessor...
|
||||
TodoStack.push_back(*I);
|
||||
|
||||
if (TodoStack.empty()) return 0; // Doesn't dominate any predecessors...
|
||||
|
||||
// Create a new loop to represent this basic block...
|
||||
Loop *L = new Loop(BB);
|
||||
BBMap[BB] = L;
|
||||
|
||||
while (!TodoStack.empty()) { // Process all the nodes in the loop
|
||||
const BasicBlock *X = TodoStack.back();
|
||||
TodoStack.pop_back();
|
||||
|
||||
if (!L->contains(X)) { // As of yet unprocessed??
|
||||
L->Blocks.push_back(X);
|
||||
|
||||
// Add all of the predecessors of X to the end of the work stack...
|
||||
TodoStack.insert(TodoStack.end(), X->pred_begin(), X->pred_end());
|
||||
}
|
||||
}
|
||||
|
||||
// Add the basic blocks that comprise this loop to the BBMap so that this
|
||||
// loop can be found for them. Also check subsidary basic blocks to see if
|
||||
// they start subloops of their own.
|
||||
//
|
||||
for (vector<const BasicBlock*>::reverse_iterator I = L->Blocks.rbegin(),
|
||||
E = L->Blocks.rend(); I != E; ++I) {
|
||||
|
||||
// Check to see if this block starts a new loop
|
||||
if (Loop *NewLoop = ConsiderForLoop(*I, DS)) {
|
||||
L->SubLoops.push_back(NewLoop);
|
||||
NewLoop->ParentLoop = L;
|
||||
}
|
||||
|
||||
if (BBMap.find(*I) == BBMap.end())
|
||||
BBMap.insert(make_pair(*I, L));
|
||||
}
|
||||
|
||||
return L;
|
||||
}
|
Loading…
Reference in New Issue
Block a user