LowerBitSets: Introduce global layout builder.

The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.

Differential Revision: http://reviews.llvm.org/D7796

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230394 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Peter Collingbourne
2015-02-24 23:17:02 +00:00
parent 7a1721e7c3
commit 0bf03cb473
5 changed files with 210 additions and 12 deletions

View File

@@ -20,6 +20,7 @@
#include <stdint.h>
#include <limits>
#include <set>
#include <vector>
namespace llvm {
@@ -73,6 +74,69 @@ struct BitSetBuilder {
BitSetInfo build();
};
/// This class implements a layout algorithm for globals referenced by bit sets
/// that tries to keep members of small bit sets together. This can
/// significantly reduce bit set sizes in many cases.
///
/// It works by assembling fragments of layout from sets of referenced globals.
/// Each set of referenced globals causes the algorithm to create a new
/// fragment, which is assembled by appending each referenced global in the set
/// into the fragment. If a referenced global has already been referenced by an
/// fragment created earlier, we instead delete that fragment and append its
/// contents into the fragment we are assembling.
///
/// By starting with the smallest fragments, we minimize the size of the
/// fragments that are copied into larger fragments. This is most intuitively
/// thought about when considering the case where the globals are virtual tables
/// and the bit sets represent their derived classes: in a single inheritance
/// hierarchy, the optimum layout would involve a depth-first search of the
/// class hierarchy (and in fact the computed layout ends up looking a lot like
/// a DFS), but a naive DFS would not work well in the presence of multiple
/// inheritance. This aspect of the algorithm ends up fitting smaller
/// hierarchies inside larger ones where that would be beneficial.
///
/// For example, consider this class hierarchy:
///
/// A B
/// \ / | \
/// C D E
///
/// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
/// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
/// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
/// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
/// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
///
/// Add bsC, fragments {{C}}
/// Add bsD, fragments {{C}, {D}}
/// Add bsE, fragments {{C}, {D}, {E}}
/// Add bsA, fragments {{A, C}, {D}, {E}}
/// Add bsB, fragments {{B, A, C, D, E}}
///
/// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
/// fewer) objects, at the cost of bsB needing to cover 1 more object.
///
/// The bit set lowering pass assigns an object index to each object that needs
/// to be laid out, and calls addFragment for each bit set passing the object
/// indices of its referenced globals. It then assembles a layout from the
/// computed layout in the Fragments field.
struct GlobalLayoutBuilder {
/// The computed layout. Each element of this vector contains a fragment of
/// layout (which may be empty) consisting of object indices.
std::vector<std::vector<uint64_t>> Fragments;
/// Mapping from object index to fragment index.
std::vector<uint64_t> FragmentMap;
GlobalLayoutBuilder(uint64_t NumObjects)
: Fragments(1), FragmentMap(NumObjects) {}
/// Add \param F to the layout while trying to keep its indices contiguous.
/// If a previously seen fragment uses any of \param F's indices, that
/// fragment will be laid out inside \param F.
void addFragment(const std::set<uint64_t> &F);
};
} // namespace llvm
#endif