Iterator that enumerates the ProgramDependenceGraph (PDG) for a function,

i.e., enumerates all data and control dependences for the function.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4958 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2002-12-08 14:13:19 +00:00
parent 96b21c1054
commit 0d4f76637d
3 changed files with 808 additions and 0 deletions

View File

@ -0,0 +1,308 @@
//===- PgmDependenceGraph.h - Enumerate the PDG for a function --*- C++ -*-===//
//
// The Program Dependence Graph (PDG) for a single function represents all
// data and control dependences for the function. This file provides an
// iterator to enumerate all these dependences. In particular, it enumerates:
//
// -- Data dependences on memory locations, computed using the
// MemoryDepAnalysis pass;
// -- Data dependences on SSA registers, directly from Def-Use edges of Values;
// -- Control dependences, computed using postdominance frontiers
// (NOT YET IMPLEMENTED).
//
// Note that this file does not create an explicit dependence graph --
// it only provides an iterator to traverse the PDG conceptually.
// The MemoryDepAnalysis does build an explicit graph, which is used internally
// here. That graph could be augmented with the other dependences above if
// desired, but for most uses there will be little need to do that.
//
// Key Classes:
//
// enum PDGIteratorFlags -- Specify which dependences to enumerate.
//
// class PDGIterator -- The PDG iterator. This is essentially like a
// pointer to class Dependence, but doesn't explicitly
// construct a Dependence object for each dependence.
//
// class PgmDependenceGraph -- Interface to obtain PDGIterators for each
// instruction.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_PGMDEPENDENCEGRAPH_H
#define LLVM_ANALYSIS_PGMDEPENDENCEGRAPH_H
#include "llvm/Analysis/DependenceGraph.h"
#include "llvm/Analysis/MemoryDepAnalysis.h"
/* #include "llvm/Analysis/PostDominators.h" -- see below */
#include "llvm/Instruction.h"
#include "llvm/Value.h"
#include "llvm/Pass.h"
#include "Support/NonCopyable.h"
#include <iterator>
class Instruction;
class Function;
class DSGraph;
class DependenceGraph;
class PgmDependenceGraph;
///---------------------------------------------------------------------------
/// enum PDGIteratorFlags
///
/// These bit flags specify which dependences incident on a statement are to be
/// enumerated: Memory deps, SSA deps, Control deps, or any combination thereof.
///---------------------------------------------------------------------------
enum PDGIteratorFlags {
MemoryDeps = 0x1, // load/store/call deps
SSADeps = 0x2, // SSA deps (true)
ControlDeps = /* 0x4*/ 0x0, // control dependences
AllDataDeps = MemoryDeps | SSADeps, // shorthand for data deps
AllDeps = MemoryDeps | SSADeps | ControlDeps // shorthand for all three
};
///---------------------------------------------------------------------------
/// struct DepIterState
///
/// This data type is primarily an internal implementation detail.
/// It are exposed here only to give inlinable access to field dep,
/// which is the representation for the current dependence pointed to by
/// a PgmDependenceGraph::iterator.
///---------------------------------------------------------------------------
class DepIterState {
private:
typedef char IterStateFlags;
static const IterStateFlags NoFlag, MemDone, SSADone, AllDone, FirstTimeFlag;
public:
DepGraphNode* depNode; // the node being enumerated
DependenceGraph::iterator memDepIter; // pointer to current memory dep
Instruction::op_iterator ssaInEdgeIter; // pointer to current SSA in-dep
Value::use_iterator ssaOutEdgeIter; // pointer to current SSA out-dep
DependenceGraph* memDepGraph; // the core dependence graph
Dependence dep; // the "current" dependence
PDGIteratorFlags depFlags:8; // which deps are we enumerating?
IterStateFlags iterFlags:8; // marking where the iter stands
/*ctor*/ DepIterState (DependenceGraph* _memDepGraph,
Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps);
bool operator==(const DepIterState& S) {
assert(memDepGraph == S.memDepGraph &&
"Incompatible iterators! This is a probable sign of something BAD.");
return (iterFlags == S.iterFlags &&
dep == S.dep && depFlags == S.depFlags && depNode == S.depNode &&
memDepIter == S.memDepIter && ssaInEdgeIter == S.ssaInEdgeIter &&
ssaOutEdgeIter == S.ssaOutEdgeIter);
}
// Is the iteration completely done?
//
bool done () const { return iterFlags & AllDone; }
// Bump this iterator logically by 1 (to next dependence) and reset the
// dep field to represent the new dependence if there is one.
// Set done = true otherwise.
//
void Next ();
// Find the first memory dependence for the current Mem In/Out iterators.
// Sets dep to that dependence and returns true if one is found.
// Returns false and leaves dep unchanged otherwise.
//
bool SetFirstMemoryDep();
// Find the next valid data dependence for the current SSA In/Out iterators.
// A valid data dependence is one that is to/from an Instruction.
// E.g., an SSA edge from a formal parameter is not a valid dependence.
// Sets dep to that dependence and returns true if a valid one is found.
// Returns false and leaves dep unchanged otherwise.
//
bool SetFirstSSADep ();
};
///---------------------------------------------------------------------------
/// The dependence iterator class. This class represents a pointer to
/// a single dependence in the program dependence graph. It is essentially
/// like a pointer to an object of class Dependence but it is much more
/// efficient to retrieve information about the dependence directly rather
/// than constructing the equivalent Dependence object (since that object
/// is normally not constructed for SSA def-use dependences).
///---------------------------------------------------------------------------
class PDGIterator: public forward_iterator<Dependence, ptrdiff_t>
{
DepIterState* istate;
#if 0
/*copy*/ PDGIterator (const PDGIterator& I); // do not implement!
PDGIterator& operator= (const PDGIterator& I); // do not implement!
/*copy*/ PDGIterator (PDGIterator& I) : istate(I.istate) {
I.istate = NULL; // ensure this is not deleted twice.
}
#endif
friend class PgmDependenceGraph;
public:
typedef PDGIterator _Self;
/*ctor*/ PDGIterator (DepIterState* _istate) : istate(_istate) { }
/*dtor*/ ~PDGIterator () { delete istate; }
/*copy*/ PDGIterator (const PDGIterator& I)
: istate(new DepIterState(*I.istate)) { }
PDGIterator& operator= (const PDGIterator& I) {
if (istate) delete istate;
istate = new DepIterState(*I.istate);
return *this;
}
// Check if the iteration is complete
//
bool fini() const { return !istate || istate->done(); }
// Retrieve the underlying Dependence. Returns NULL if fini().
//
Dependence* operator*() const { return fini() ? NULL : &istate->dep; }
Dependence* operator->() const { assert(!fini()); return &istate->dep; }
// Increment the iterator
//
_Self& operator++() { if (!fini()) istate->Next(); return *this;}
_Self& operator++(int); // do not implement!
// Equality comparison: a "null" state should compare equal to done
// This is efficient for comparing with "end" or with itself, but could
// be quite inefficient for other cases.
//
bool operator==(const PDGIterator& I) const {
if (I.istate == NULL) // most common case: iter == end()
return (istate == NULL || istate->done());
if (istate == NULL)
return (I.istate == NULL || I.istate->done());
return (*istate == *I.istate);
}
bool operator!=(const PDGIterator& I) const {
return ! (*this == I);
}
};
///---------------------------------------------------------------------------
/// class PgmDependenceGraph:
///
/// This pass enumerates dependences incident on each instruction in a function.
/// It can be made a FunctionPass once a Pass (such as Parallelize) is
/// allowed to use a FunctionPass such as this one.
///---------------------------------------------------------------------------
class PgmDependenceGraph: public Pass {
/// Information about the function being analyzed.
///
DependenceGraph* memDepGraph;
// print helper function.
void printOutgoingSSADeps(Instruction& I, std::ostream &O);
// MakeIterator --
// The first version creates and initializes an iterator as specified.
// The second version creates a null iterator representing end-of-iteration.
//
PDGIterator MakeIterator (Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps);
PDGIterator MakeIterator () { return PDGIterator(NULL); }
friend class PDGIterator;
friend class DepIterState;
public:
typedef PDGIterator iterator;
/* typedef PDGIterator<const Dependence> const iterator; */
public:
PgmDependenceGraph() : memDepGraph(NULL) { }
~PgmDependenceGraph() { }
/// Iterators to enumerate the program dependence graph for a function.
/// Note that this does not provide "end" iterators to check for completion.
/// Instead, just use iterator::fini() or iterator::operator*() == NULL
//
iterator inDepBegin(Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
return MakeIterator(I, /*inDeps*/ true, whichDeps);
}
iterator inDepEnd (Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
return MakeIterator();
}
iterator outDepBegin(Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
return MakeIterator(I, /*inDeps*/ false, whichDeps);
}
iterator outDepEnd (Instruction& I, PDGIteratorFlags whichDeps = AllDeps) {
return MakeIterator();
}
///------------------------------------------------------------------------
/// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
/// These functions will go away once this class becomes a FunctionPass.
/// Driver function to compute dependence graphs for every function.
///
bool run(Module& M) { return true; }
/// getGraph() -- Retrieve the pgm dependence graph for a function.
/// This is temporary and will go away once this is a FunctionPass.
/// At that point, this class itself will be the PgmDependenceGraph you want.
///
PgmDependenceGraph& getGraph(Function& F) {
Visiting(F);
return *this;
}
private:
void Visiting(Function& F) {
memDepGraph = &getAnalysis<MemoryDepAnalysis>().getGraph(F);
}
public:
///----END TEMPORARY FUNCTIONS---------------------------------------------
/// This initializes the program dependence graph iterator for a function.
///
bool runOnFunction(Function& func) {
Visiting(func);
return true;
}
/// getAnalysisUsage - This does not modify anything.
/// It uses the Memory Dependence Analysis pass.
/// It needs to use the PostDominanceFrontier pass, but cannot because
/// that is a FunctionPass. This means control dependence are not emumerated.
///
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MemoryDepAnalysis>();
/* AU.addRequired<PostDominanceFrontier>(); */
}
/// Debugging support methods
///
void print(std::ostream &O) const;
void dump() const;
};
//===----------------------------------------------------------------------===//
#endif

View File

@ -0,0 +1,250 @@
//===- PgmDependenceGraph.cpp - Enumerate PDG for a function ----*- C++ -*-===//
//
// The Program Dependence Graph (PDG) for a single function represents all
// data and control dependences for the function. This file provides an
// iterator to enumerate all these dependences. In particular, it enumerates:
//
// -- Data dependences on memory locations, computed using the
// MemoryDepAnalysis pass;
// -- Data dependences on SSA registers, directly from Def-Use edges of Values;
// -- Control dependences, computed using postdominance frontiers
// (NOT YET IMPLEMENTED).
//
// Note that this file does not create an explicit dependence graph --
// it only provides an iterator to traverse the PDG conceptually.
// The MemoryDepAnalysis does build an explicit graph, which is used internally
// here. That graph could be augmented with the other dependences above if
// desired, but for most uses there will be little need to do that.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/PgmDependenceGraph.h"
#include "llvm/Analysis/MemoryDepAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
//----------------------------------------------------------------------------
// class DepIterState
//----------------------------------------------------------------------------
const DepIterState::IterStateFlags DepIterState::NoFlag = 0x0;
const DepIterState::IterStateFlags DepIterState::MemDone = 0x1;
const DepIterState::IterStateFlags DepIterState::SSADone = 0x2;
const DepIterState::IterStateFlags DepIterState::AllDone = 0x4;
const DepIterState::IterStateFlags DepIterState::FirstTimeFlag= 0x8;
// Find the first memory dependence for the current Mem In/Out iterators.
// Find the first memory dependence for the current Mem In/Out iterators.
// Sets dep to that dependence and returns true if one is found.
//
bool DepIterState::SetFirstMemoryDep()
{
if (! (depFlags & MemoryDeps))
return false;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
if (( doIncomingDeps && memDepIter == memDepGraph->inDepEnd( *depNode)) ||
(!doIncomingDeps && memDepIter == memDepGraph->outDepEnd(*depNode)))
{
iterFlags |= MemDone;
return false;
}
dep = *memDepIter; // simple copy from dependence in memory DepGraph
return true;
}
// Find the first valid data dependence for the current SSA In/Out iterators.
// A valid data dependence is one that is to/from an Instruction.
// E.g., an SSA edge from a formal parameter is not a valid dependence.
// Sets dep to that dependence and returns true if a valid one is found.
// Returns false and leaves dep unchanged otherwise.
//
bool DepIterState::SetFirstSSADep()
{
if (! (depFlags & SSADeps))
return false;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
Instruction* firstTarget = NULL;
// Increment the In or Out iterator till it runs out or we find a valid dep
if (doIncomingDeps)
for (Instruction::op_iterator E = depNode->getInstr().op_end();
ssaInEdgeIter != E &&
(firstTarget = dyn_cast<Instruction>(ssaInEdgeIter->get()))== NULL; )
++ssaInEdgeIter;
else
for (Value::use_iterator E = depNode->getInstr().use_end();
ssaOutEdgeIter != E &&
(firstTarget = dyn_cast<Instruction>(*ssaOutEdgeIter)) == NULL; )
++ssaOutEdgeIter;
// If the iterator ran out before we found a valid dep, there isn't one.
if (!firstTarget)
{
iterFlags |= SSADone;
return false;
}
// Create a simple dependence object to represent this SSA dependence.
dep = Dependence(memDepGraph->getNode(*firstTarget, /*create*/ true),
TrueDependence, doIncomingDeps);
return true;
}
DepIterState::DepIterState(DependenceGraph* _memDepGraph,
Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps)
: memDepGraph(_memDepGraph),
depFlags(whichDeps),
iterFlags(NoFlag)
{
depNode = memDepGraph->getNode(I, /*create*/ true);
if (incomingDeps)
{
if (whichDeps & MemoryDeps) memDepIter= memDepGraph->inDepBegin(*depNode);
if (whichDeps & SSADeps) ssaInEdgeIter = I.op_begin();
/* Initialize control dependence iterator here. */
}
else
{
if (whichDeps & MemoryDeps) memDepIter=memDepGraph->outDepBegin(*depNode);
if (whichDeps & SSADeps) ssaOutEdgeIter = I.use_begin();
/* Initialize control dependence iterator here. */
}
// Set the dependence to the first of a memory dep or an SSA dep
// and set the done flag if either is found. Otherwise, set the
// init flag to indicate that the iterators have just been initialized.
//
if (!SetFirstMemoryDep() && !SetFirstSSADep())
iterFlags |= AllDone;
else
iterFlags |= FirstTimeFlag;
}
// Helper function for ++ operator that bumps iterator by 1 (to next
// dependence) and resets the dep field to represent the new dependence.
//
void DepIterState::Next()
{
// firstMemDone and firstSsaDone are used to indicate when the memory or
// SSA iterators just ran out, or when this is the very first increment.
// In either case, the next iterator (if any) should not be incremented.
//
bool firstMemDone = iterFlags & FirstTimeFlag;
bool firstSsaDone = iterFlags & FirstTimeFlag;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
if (depFlags & MemoryDeps && ! (iterFlags & MemDone))
{
iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
++memDepIter;
if (SetFirstMemoryDep())
return;
firstMemDone = true; // flags that we _just_ rolled over
}
if (depFlags & SSADeps && ! (iterFlags & SSADone))
{
// Don't increment the SSA iterator if we either just rolled over from
// the memory dep iterator, or if the SSA iterator is already done.
iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
if (! firstMemDone)
if (doIncomingDeps) ++ssaInEdgeIter;
else ++ssaOutEdgeIter;
if (SetFirstSSADep())
return;
firstSsaDone = true; // flags if we just rolled over
}
if (depFlags & ControlDeps != 0)
{
assert(0 && "Cannot handle control deps");
// iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
}
// This iterator is now complete.
iterFlags |= AllDone;
}
//----------------------------------------------------------------------------
// class PgmDependenceGraph
//----------------------------------------------------------------------------
// MakeIterator -- Create and initialize an iterator as specified.
//
PDGIterator PgmDependenceGraph::MakeIterator(Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps)
{
assert(memDepGraph && "Function not initialized!");
return PDGIterator(new DepIterState(memDepGraph, I, incomingDeps, whichDeps));
}
void PgmDependenceGraph::printOutgoingSSADeps(Instruction& I,
std::ostream &O)
{
iterator SI = this->outDepBegin(I, SSADeps);
iterator SE = this->outDepEnd(I, SSADeps);
if (SI == SE)
return;
O << "\n Outgoing SSA dependences:\n";
for ( ; SI != SE; ++SI)
{
O << "\t";
SI->print(O);
O << " to instruction:";
O << SI->getSink()->getInstr();
}
}
void PgmDependenceGraph::print(std::ostream &O) const
{
MemoryDepAnalysis& graphSet = getAnalysis<MemoryDepAnalysis>();
// TEMPORARY LOOP
for (hash_map<Function*, DependenceGraph*>::iterator
I = graphSet.funcMap.begin(), E = graphSet.funcMap.end();
I != E; ++I)
{
Function* func = I->first;
DependenceGraph* depGraph = I->second;
const_cast<PgmDependenceGraph*>(this)->runOnFunction(*func);
O << "DEPENDENCE GRAPH FOR FUNCTION " << func->getName() << ":\n";
for (Function::iterator BB=func->begin(), FE=func->end(); BB != FE; ++BB)
for (BasicBlock::iterator II=BB->begin(), IE=BB->end(); II !=IE; ++II)
{
DepGraphNode* dgNode = depGraph->getNode(*II, /*create*/ true);
dgNode->print(O);
const_cast<PgmDependenceGraph*>(this)->printOutgoingSSADeps(*II, O);
}
} // END TEMPORARY LOOP
}
void PgmDependenceGraph::dump() const
{
this->print(std::cerr);
}
static RegisterAnalysis<PgmDependenceGraph>
Z("pgmdep", "Enumerate Program Dependence Graph (data and control)");

View File

@ -0,0 +1,250 @@
//===- PgmDependenceGraph.cpp - Enumerate PDG for a function ----*- C++ -*-===//
//
// The Program Dependence Graph (PDG) for a single function represents all
// data and control dependences for the function. This file provides an
// iterator to enumerate all these dependences. In particular, it enumerates:
//
// -- Data dependences on memory locations, computed using the
// MemoryDepAnalysis pass;
// -- Data dependences on SSA registers, directly from Def-Use edges of Values;
// -- Control dependences, computed using postdominance frontiers
// (NOT YET IMPLEMENTED).
//
// Note that this file does not create an explicit dependence graph --
// it only provides an iterator to traverse the PDG conceptually.
// The MemoryDepAnalysis does build an explicit graph, which is used internally
// here. That graph could be augmented with the other dependences above if
// desired, but for most uses there will be little need to do that.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/PgmDependenceGraph.h"
#include "llvm/Analysis/MemoryDepAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
//----------------------------------------------------------------------------
// class DepIterState
//----------------------------------------------------------------------------
const DepIterState::IterStateFlags DepIterState::NoFlag = 0x0;
const DepIterState::IterStateFlags DepIterState::MemDone = 0x1;
const DepIterState::IterStateFlags DepIterState::SSADone = 0x2;
const DepIterState::IterStateFlags DepIterState::AllDone = 0x4;
const DepIterState::IterStateFlags DepIterState::FirstTimeFlag= 0x8;
// Find the first memory dependence for the current Mem In/Out iterators.
// Find the first memory dependence for the current Mem In/Out iterators.
// Sets dep to that dependence and returns true if one is found.
//
bool DepIterState::SetFirstMemoryDep()
{
if (! (depFlags & MemoryDeps))
return false;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
if (( doIncomingDeps && memDepIter == memDepGraph->inDepEnd( *depNode)) ||
(!doIncomingDeps && memDepIter == memDepGraph->outDepEnd(*depNode)))
{
iterFlags |= MemDone;
return false;
}
dep = *memDepIter; // simple copy from dependence in memory DepGraph
return true;
}
// Find the first valid data dependence for the current SSA In/Out iterators.
// A valid data dependence is one that is to/from an Instruction.
// E.g., an SSA edge from a formal parameter is not a valid dependence.
// Sets dep to that dependence and returns true if a valid one is found.
// Returns false and leaves dep unchanged otherwise.
//
bool DepIterState::SetFirstSSADep()
{
if (! (depFlags & SSADeps))
return false;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
Instruction* firstTarget = NULL;
// Increment the In or Out iterator till it runs out or we find a valid dep
if (doIncomingDeps)
for (Instruction::op_iterator E = depNode->getInstr().op_end();
ssaInEdgeIter != E &&
(firstTarget = dyn_cast<Instruction>(ssaInEdgeIter->get()))== NULL; )
++ssaInEdgeIter;
else
for (Value::use_iterator E = depNode->getInstr().use_end();
ssaOutEdgeIter != E &&
(firstTarget = dyn_cast<Instruction>(*ssaOutEdgeIter)) == NULL; )
++ssaOutEdgeIter;
// If the iterator ran out before we found a valid dep, there isn't one.
if (!firstTarget)
{
iterFlags |= SSADone;
return false;
}
// Create a simple dependence object to represent this SSA dependence.
dep = Dependence(memDepGraph->getNode(*firstTarget, /*create*/ true),
TrueDependence, doIncomingDeps);
return true;
}
DepIterState::DepIterState(DependenceGraph* _memDepGraph,
Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps)
: memDepGraph(_memDepGraph),
depFlags(whichDeps),
iterFlags(NoFlag)
{
depNode = memDepGraph->getNode(I, /*create*/ true);
if (incomingDeps)
{
if (whichDeps & MemoryDeps) memDepIter= memDepGraph->inDepBegin(*depNode);
if (whichDeps & SSADeps) ssaInEdgeIter = I.op_begin();
/* Initialize control dependence iterator here. */
}
else
{
if (whichDeps & MemoryDeps) memDepIter=memDepGraph->outDepBegin(*depNode);
if (whichDeps & SSADeps) ssaOutEdgeIter = I.use_begin();
/* Initialize control dependence iterator here. */
}
// Set the dependence to the first of a memory dep or an SSA dep
// and set the done flag if either is found. Otherwise, set the
// init flag to indicate that the iterators have just been initialized.
//
if (!SetFirstMemoryDep() && !SetFirstSSADep())
iterFlags |= AllDone;
else
iterFlags |= FirstTimeFlag;
}
// Helper function for ++ operator that bumps iterator by 1 (to next
// dependence) and resets the dep field to represent the new dependence.
//
void DepIterState::Next()
{
// firstMemDone and firstSsaDone are used to indicate when the memory or
// SSA iterators just ran out, or when this is the very first increment.
// In either case, the next iterator (if any) should not be incremented.
//
bool firstMemDone = iterFlags & FirstTimeFlag;
bool firstSsaDone = iterFlags & FirstTimeFlag;
bool doIncomingDeps = dep.getDepType() & IncomingFlag;
if (depFlags & MemoryDeps && ! (iterFlags & MemDone))
{
iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
++memDepIter;
if (SetFirstMemoryDep())
return;
firstMemDone = true; // flags that we _just_ rolled over
}
if (depFlags & SSADeps && ! (iterFlags & SSADone))
{
// Don't increment the SSA iterator if we either just rolled over from
// the memory dep iterator, or if the SSA iterator is already done.
iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
if (! firstMemDone)
if (doIncomingDeps) ++ssaInEdgeIter;
else ++ssaOutEdgeIter;
if (SetFirstSSADep())
return;
firstSsaDone = true; // flags if we just rolled over
}
if (depFlags & ControlDeps != 0)
{
assert(0 && "Cannot handle control deps");
// iterFlags &= ~FirstTimeFlag; // clear "firstTime" flag
}
// This iterator is now complete.
iterFlags |= AllDone;
}
//----------------------------------------------------------------------------
// class PgmDependenceGraph
//----------------------------------------------------------------------------
// MakeIterator -- Create and initialize an iterator as specified.
//
PDGIterator PgmDependenceGraph::MakeIterator(Instruction& I,
bool incomingDeps,
PDGIteratorFlags whichDeps)
{
assert(memDepGraph && "Function not initialized!");
return PDGIterator(new DepIterState(memDepGraph, I, incomingDeps, whichDeps));
}
void PgmDependenceGraph::printOutgoingSSADeps(Instruction& I,
std::ostream &O)
{
iterator SI = this->outDepBegin(I, SSADeps);
iterator SE = this->outDepEnd(I, SSADeps);
if (SI == SE)
return;
O << "\n Outgoing SSA dependences:\n";
for ( ; SI != SE; ++SI)
{
O << "\t";
SI->print(O);
O << " to instruction:";
O << SI->getSink()->getInstr();
}
}
void PgmDependenceGraph::print(std::ostream &O) const
{
MemoryDepAnalysis& graphSet = getAnalysis<MemoryDepAnalysis>();
// TEMPORARY LOOP
for (hash_map<Function*, DependenceGraph*>::iterator
I = graphSet.funcMap.begin(), E = graphSet.funcMap.end();
I != E; ++I)
{
Function* func = I->first;
DependenceGraph* depGraph = I->second;
const_cast<PgmDependenceGraph*>(this)->runOnFunction(*func);
O << "DEPENDENCE GRAPH FOR FUNCTION " << func->getName() << ":\n";
for (Function::iterator BB=func->begin(), FE=func->end(); BB != FE; ++BB)
for (BasicBlock::iterator II=BB->begin(), IE=BB->end(); II !=IE; ++II)
{
DepGraphNode* dgNode = depGraph->getNode(*II, /*create*/ true);
dgNode->print(O);
const_cast<PgmDependenceGraph*>(this)->printOutgoingSSADeps(*II, O);
}
} // END TEMPORARY LOOP
}
void PgmDependenceGraph::dump() const
{
this->print(std::cerr);
}
static RegisterAnalysis<PgmDependenceGraph>
Z("pgmdep", "Enumerate Program Dependence Graph (data and control)");