Make NumMicroOps a variable in the subtarget's instruction itinerary.

The TargetInstrInfo::getNumMicroOps API does not change, but soon it
will be used by MachineScheduler. Now each subtarget can specify the
number of micro-ops per itinerary class. For ARM, this is currently
always dynamic (-1), because it is used for load/store multiple which
depends on the number of register operands.

Zero is now a valid number of micro-ops. This can be used for
nop pseudo-instructions or instructions that the hardware can squash
during dispatch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159406 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick
2012-06-29 03:23:18 +00:00
parent 40307c7dbe
commit 0d9513c74f
9 changed files with 81 additions and 63 deletions

View File

@@ -95,7 +95,7 @@ struct InstrStage {
/// operands are read and written.
///
struct InstrItinerary {
unsigned NumMicroOps; ///< # of micro-ops, 0 means it's variable
int NumMicroOps; ///< # of micro-ops, -1 means it's variable
unsigned FirstStage; ///< Index of first stage in itinerary
unsigned LastStage; ///< Index of last + 1 stage in itinerary
unsigned FirstOperandCycle; ///< Index of first operand rd/wr
@@ -318,11 +318,11 @@ public:
bool isMicroCoded(unsigned ItinClassIndx) const {
if (isEmpty())
return false;
return Itineraries[ItinClassIndx].NumMicroOps != 1;
int UOps = Itineraries[ItinClassIndx].NumMicroOps;
return UOps < 0 || UOps > 1;
}
};
} // End llvm namespace
#endif

View File

@@ -648,7 +648,9 @@ public:
}
/// getNumMicroOps - Return the number of u-operations the given machine
/// instruction will be decoded to on the target cpu.
/// instruction will be decoded to on the target cpu. The itinerary's
/// IssueWidth is the number of microops that can be dispatched each
/// cycle. An instruction with zero microops takes no dispatch resources.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr *MI) const = 0;

View File

@@ -73,20 +73,20 @@ class InstrStage<int cycles, list<FuncUnit> units,
// across all chip sets. Thus a new chip set can be added without modifying
// instruction information.
//
// NumMicroOps represents the number of micro-operations that each instruction
// in the class are decoded to. If the number is zero, then it means the
// instruction can decode into variable number of micro-ops and it must be
// determined dynamically.
//
class InstrItinClass<int ops = 1> {
int NumMicroOps = ops;
}
class InstrItinClass;
def NoItinerary : InstrItinClass;
//===----------------------------------------------------------------------===//
// Instruction itinerary data - These values provide a runtime map of an
// instruction itinerary class (name) to its itinerary data.
//
// NumMicroOps represents the number of micro-operations that each instruction
// in the class are decoded to. If the number is zero, then it means the
// instruction can decode into variable number of micro-ops and it must be
// determined dynamically. This directly relates to the itineraries
// global IssueWidth property, which constrains the number of microops
// that can issue per cycle.
//
// OperandCycles are optional "cycle counts". They specify the cycle after
// instruction issue the values which correspond to specific operand indices
// are defined or read. Bypasses are optional "pipeline forwarding pathes", if
@@ -106,8 +106,9 @@ def NoItinerary : InstrItinClass;
// is reduced by 1.
class InstrItinData<InstrItinClass Class, list<InstrStage> stages,
list<int> operandcycles = [],
list<Bypass> bypasses = []> {
list<Bypass> bypasses = [], int uops = 1> {
InstrItinClass TheClass = Class;
int NumMicroOps = uops;
list<InstrStage> Stages = stages;
list<int> OperandCycles = operandcycles;
list<Bypass> Bypasses = bypasses;