Fix a bug in the cost calculation of vector casts. Detect situations where bitcasts cost zero.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167170 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nadav Rotem 2012-10-31 20:52:26 +00:00
parent 2932284f04
commit 0dba9a9a26
2 changed files with 90 additions and 27 deletions

View File

@ -211,40 +211,55 @@ unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
std::pair<unsigned, EVT> DstLT =
getTypeLegalizationCost(Dst->getContext(), TLI->getValueType(Dst));
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Just check the op cost:
if (!TLI->isOperationExpand(ISD, DstLT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return SrcLT.first * 1;
// Handle scalar conversions.
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
// Just check the op cost. If the operation is legal then assume it costs 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (Dst->isVectorTy() && Src->isVectorTy()) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Bitcast between types that are legalized to the same type are free.
if (Opcode == Instruction::BitCast)
return 0;
// Just check the op cost. If the operation is legal then assume it costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
}
unsigned ScalarizationCost = 1;
// Otherwise, assume that the cast is scalarized.
if (Dst->isVectorTy()) {
// If we are converting vectors and the operation is illegal, or
// if the vectors are legalized to different types, estimate the
// scalarization costs.
unsigned Num = Dst->getVectorNumElements();
unsigned Cost = getCastInstrCost(Opcode, Src->getScalarType(),
Dst->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
ScalarizationCost *= getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
if (Src->isVectorTy()) {
unsigned Num = Src->getVectorNumElements();
unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(),
Src->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
ScalarizationCost *= getScalarizationOverhead(Src, true, true) + Num * Cost;
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
return ScalarizationCost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast)
// Illegal bitcasts are done by storing and loading from a stack slot.
return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
(Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
llvm_unreachable("Unhandled cast");
}
unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
return 1;

View File

@ -0,0 +1,48 @@
; RUN: opt < %s -loop-vectorize -mtriple=x86_64-apple-macosx10.8.0 -mcpu=corei7-avx -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.8.0"
;CHECK: @conversion_cost1
;CHECK: store <8 x i8>
;CHECK: ret
define i32 @conversion_cost1(i32 %n, i8* nocapture %A, float* nocapture %B) nounwind uwtable ssp {
%1 = icmp sgt i32 %n, 3
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 3, %0 ]
%2 = trunc i64 %indvars.iv to i8
%3 = getelementptr inbounds i8* %A, i64 %indvars.iv
store i8 %2, i8* %3, align 1
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
ret i32 undef
}
;CHECK: @conversion_cost2
;CHECK: store <8 x float>
;CHECK: ret
define i32 @conversion_cost2(i32 %n, i8* nocapture %A, float* nocapture %B) nounwind uwtable ssp {
%1 = icmp sgt i32 %n, 9
br i1 %1, label %.lr.ph, label %._crit_edge
.lr.ph: ; preds = %0, %.lr.ph
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 9, %0 ]
%2 = add nsw i64 %indvars.iv, 3
%3 = trunc i64 %2 to i32
%4 = sitofp i32 %3 to float
%5 = getelementptr inbounds float* %B, i64 %indvars.iv
store float %4, float* %5, align 4
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %n
br i1 %exitcond, label %._crit_edge, label %.lr.ph
._crit_edge: ; preds = %.lr.ph, %0
ret i32 undef
}