revert r105521, which is breaking the buildbots with stuff like this:

In file included from X86InstrInfo.cpp:16:
X86GenInstrInfo.inc:2789: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2790: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2792: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2793: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2808: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2809: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2816: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2817: error: integer constant is too large for 'long' type



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105524 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-06-05 04:17:30 +00:00
parent 3eca98bb3a
commit 1087f54ddb
14 changed files with 34 additions and 333 deletions

View File

@ -244,7 +244,7 @@ class Instruction {
string DisableEncoding = "";
/// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
bits<64> TSFlags = 0;
bits<32> TSFlags = 0;
}
/// Predicates - These are extra conditionals which are turned into instruction

View File

@ -15,8 +15,6 @@
#ifndef LLVM_TARGET_TARGETINSTRDESC_H
#define LLVM_TARGET_TARGETINSTRDESC_H
#include "llvm/System/DataTypes.h"
namespace llvm {
class TargetRegisterClass;
@ -133,7 +131,7 @@ public:
unsigned short SchedClass; // enum identifying instr sched class
const char * Name; // Name of the instruction record in td file
unsigned Flags; // Flags identifying machine instr class
uint64_t TSFlags; // Target Specific Flag values
unsigned TSFlags; // Target Specific Flag values
const unsigned *ImplicitUses; // Registers implicitly read by this instr
const unsigned *ImplicitDefs; // Registers implicitly defined by this instr
const TargetRegisterClass **RCBarriers; // Reg classes completely "clobbered"

View File

@ -56,7 +56,7 @@ ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineInstr *MI = MBBI;
MachineFunction &MF = *MI->getParent()->getParent();
uint64_t TSFlags = MI->getDesc().TSFlags;
unsigned TSFlags = MI->getDesc().TSFlags;
bool isPre = false;
switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
default: return NULL;
@ -488,7 +488,7 @@ unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
// Basic size info comes from the TSFlags field.
const TargetInstrDesc &TID = MI->getDesc();
uint64_t TSFlags = TID.TSFlags;
unsigned TSFlags = TID.TSFlags;
unsigned Opc = MI->getOpcode();
switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {

View File

@ -137,25 +137,25 @@ static inline void setSlice(uint32_t &Bits, unsigned From, unsigned To,
/// Various utilities for checking the target specific flags.
/// A unary data processing instruction doesn't have an Rn operand.
static inline bool isUnaryDP(uint64_t TSFlags) {
static inline bool isUnaryDP(unsigned TSFlags) {
return (TSFlags & ARMII::UnaryDP);
}
/// This four-bit field describes the addressing mode used.
/// See also ARMBaseInstrInfo.h.
static inline unsigned getAddrMode(uint64_t TSFlags) {
static inline unsigned getAddrMode(unsigned TSFlags) {
return (TSFlags & ARMII::AddrModeMask);
}
/// {IndexModePre, IndexModePost}
/// Only valid for load and store ops.
/// See also ARMBaseInstrInfo.h.
static inline unsigned getIndexMode(uint64_t TSFlags) {
static inline unsigned getIndexMode(unsigned TSFlags) {
return (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
}
/// Pre-/post-indexed operations define an extra $base_wb in the OutOperandList.
static inline bool isPrePostLdSt(uint64_t TSFlags) {
static inline bool isPrePostLdSt(unsigned TSFlags) {
return (TSFlags & ARMII::IndexModeMask) != 0;
}

View File

@ -78,7 +78,7 @@ PPCHazardRecognizer970::GetInstrType(unsigned Opcode,
isLoad = TID.mayLoad();
isStore = TID.mayStore();
uint64_t TSFlags = TID.TSFlags;
unsigned TSFlags = TID.TSFlags;
isFirst = TSFlags & PPCII::PPC970_First;
isSingle = TSFlags & PPCII::PPC970_Single;

View File

@ -232,7 +232,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
MachineInstr *MI = I;
uint64_t Flags = MI->getDesc().TSFlags;
unsigned Flags = MI->getDesc().TSFlags;
unsigned FPInstClass = Flags & X86II::FPTypeMask;
if (MI->isInlineAsm())

View File

@ -83,7 +83,6 @@ def SSEPackedInt : Domain<3>;
class OpSize { bit hasOpSizePrefix = 1; }
class AdSize { bit hasAdSizePrefix = 1; }
class REX_W { bit hasREX_WPrefix = 1; }
class VEX_4V { bit hasVEX_4VPrefix = 1; }
class LOCK { bit hasLockPrefix = 1; }
class SegFS { bits<2> SegOvrBits = 1; }
class SegGS { bits<2> SegOvrBits = 2; }
@ -125,7 +124,6 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
bits<4> Prefix = 0; // Which prefix byte does this inst have?
bit hasREX_WPrefix = 0; // Does this inst requires the REX.W prefix?
bit hasVEX_4VPrefix = 0; // Does this inst requires the VEX.VVVV prefix?
FPFormat FPForm = NotFP; // What flavor of FP instruction is this?
bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix?
bits<2> SegOvrBits = 0; // Segment override prefix.
@ -143,7 +141,6 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
let TSFlags{21-20} = SegOvrBits;
let TSFlags{23-22} = ExeDomain.Value;
let TSFlags{31-24} = Opcode;
let TSFlags{32} = hasVEX_4VPrefix;
}
class I<bits<8> o, Format f, dag outs, dag ins, string asm,
@ -219,7 +216,6 @@ class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
// SSI - SSE1 instructions with XS prefix.
// PSI - SSE1 instructions with TB prefix.
// PSIi8 - SSE1 instructions with ImmT == Imm8 and TB prefix.
// VSSI - SSE1 instructions with XS prefix in AVX form.
class SSI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE1]>;
@ -233,10 +229,6 @@ class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedSingle>, TB,
Requires<[HasSSE1]>;
class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, XS, VEX_4V,
Requires<[HasAVX, HasSSE1]>;
// SSE2 Instruction Templates:
//
@ -245,7 +237,6 @@ class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm,
// SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix.
// PDI - SSE2 instructions with TB and OpSize prefixes.
// PDIi8 - SSE2 instructions with ImmT == Imm8 and TB and OpSize prefixes.
// VSDI - SSE2 instructions with XD prefix in AVX form.
class SDI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, XD, Requires<[HasSSE2]>;
@ -262,10 +253,6 @@ class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern, SSEPackedDouble>, TB, OpSize,
Requires<[HasSSE2]>;
class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, !strconcat("v", asm), pattern>, XD, VEX_4V,
Requires<[HasAVX, HasSSE2]>;
// SSE3 Instruction Templates:
//

View File

@ -417,36 +417,22 @@ namespace X86II {
OpcodeShift = 24,
OpcodeMask = 0xFF << OpcodeShift
};
// FIXME: The enum opcode space is over and more bits are needed. Anywhere
// those enums below are used, TSFlags must be shifted right by 32 first.
enum {
//===------------------------------------------------------------------===//
// VEX_4V - VEX prefixes are instruction prefixes used in AVX.
// VEX_4V is used to specify an additional AVX/SSE register. Several 2
// address instructions in SSE are represented as 3 address ones in AVX
// and the additional register is encoded in VEX_VVVV prefix.
//
VEXShift = 0,
VEX_4V = 1 << VEXShift
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
// specified machine instruction.
//
static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) {
return TSFlags >> X86II::OpcodeShift;
}
static inline bool hasImm(uint64_t TSFlags) {
static inline bool hasImm(unsigned TSFlags) {
return (TSFlags & X86II::ImmMask) != 0;
}
/// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
/// of the specified instruction.
static inline unsigned getSizeOfImm(uint64_t TSFlags) {
static inline unsigned getSizeOfImm(unsigned TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: assert(0 && "Unknown immediate size");
case X86II::Imm8:
@ -460,7 +446,7 @@ namespace X86II {
/// isImmPCRel - Return true if the immediate of the specified instruction's
/// TSFlags indicates that it is pc relative.
static inline unsigned isImmPCRel(uint64_t TSFlags) {
static inline unsigned isImmPCRel(unsigned TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: assert(0 && "Unknown immediate size");
case X86II::Imm8PCRel:

View File

@ -673,26 +673,6 @@ multiclass basic_sse12_fp_binop_rm<bits<8> opc, string OpcodeStr,
let isCommutable = Commutable;
}
def V#NAME#SSrr : VSSI<opc, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]> {
let isCommutable = Commutable;
let Constraints = "";
let isAsmParserOnly = 1;
}
def V#NAME#SDrr : VSDI<opc, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR64:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]> {
let isCommutable = Commutable;
let Constraints = "";
let isAsmParserOnly = 1;
}
// Scalar operation, reg+mem.
def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f32mem:$src2),

View File

@ -101,19 +101,12 @@ public:
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const;
void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
const MCInst &MI, const TargetInstrDesc &Desc,
raw_ostream &OS) const;
void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
const MCInst &MI, const TargetInstrDesc &Desc,
raw_ostream &OS) const;
};
} // end anonymous namespace
@ -140,7 +133,7 @@ static bool isDisp8(int Value) {
/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
/// in an instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
static MCFixupKind getImmFixupKind(unsigned TSFlags) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
bool isPCRel = X86II::isImmPCRel(TSFlags);
@ -191,7 +184,7 @@ EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
uint64_t TSFlags, unsigned &CurByte,
unsigned TSFlags, unsigned &CurByte,
raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const{
const MCOperand &Disp = MI.getOperand(Op+3);
@ -331,159 +324,10 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
}
/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
/// called VEX.
void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
const MCInst &MI, const TargetInstrDesc &Desc,
raw_ostream &OS) const {
// Pseudo instructions never have a VEX prefix.
if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
return;
// VEX_R: opcode externsion equivalent to REX.R in
// 1's complement (inverted) form
//
// 1: Same as REX_R=0 (must be 1 in 32-bit mode)
// 0: Same as REX_R=1 (64 bit mode only)
//
unsigned char VEX_R = 0x1;
// VEX_B:
//
// 1: Same as REX_B=0 (ignored in 32-bit mode)
// 0: Same as REX_B=1 (64 bit mode only)
//
unsigned char VEX_B = 0x1;
// VEX_W: opcode specific (use like REX.W, or used for
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
// 0b00001: implied 0F leading opcode
// 0b00010: implied 0F 38 leading opcode bytes
// 0b00011: implied 0F 3A leading opcode bytes
// 0b00100-0b11111: Reserved for future use
//
unsigned char VEX_5M = 0x1;
// VEX_4V (VEX vvvv field): a register specifier
// (in 1's complement form) or 1111 if unused.
unsigned char VEX_4V = 0xf;
// VEX_L (Vector Length):
//
// 0: scalar or 128-bit vector
// 1: 256-bit vector
//
unsigned char VEX_L = 0;
// VEX_PP: opcode extension providing equivalent
// functionality of a SIMD prefix
//
// 0b00: None
// 0b01: 66 (not handled yet)
// 0b10: F3
// 0b11: F2
//
unsigned char VEX_PP = 0;
switch (TSFlags & X86II::Op0Mask) {
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
case X86II::T8: // 0F 38
VEX_5M = 0x2;
break;
case X86II::TA: // 0F 3A
VEX_5M = 0x3;
break;
case X86II::TF: // F2 0F 38
VEX_PP = 0x3;
VEX_5M = 0x2;
break;
case X86II::XS: // F3 0F
VEX_PP = 0x2;
break;
case X86II::XD: // F2 0F
VEX_PP = 0x3;
break;
}
unsigned NumOps = MI.getNumOperands();
unsigned i = 0;
unsigned SrcReg = 0, SrcRegNum = 0;
switch (TSFlags & X86II::FormMask) {
case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
case X86II::MRMSrcReg:
if (MI.getOperand(0).isReg() &&
X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
VEX_R = 0x0;
// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the
// range 0-7 and the difference between the 2 groups is given by the
// REX prefix. In the VEX prefix, registers are seen sequencially
// from 0-15 and encoded in 1's complement form, example:
//
// ModRM field => XMM9 => 1
// VEX.VVVV => XMM9 => ~9
//
// See table 4-35 of Intel AVX Programming Reference for details.
SrcReg = MI.getOperand(1).getReg();
SrcRegNum = GetX86RegNum(MI.getOperand(1));
if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
SrcRegNum += 8;
// The registers represented through VEX_VVVV should
// be encoded in 1's complement form.
if ((TSFlags >> 32) & X86II::VEX_4V)
VEX_4V = (~SrcRegNum) & 0xf;
i = 2; // Skip the VEX.VVVV operand.
for (; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
VEX_B = 0x0;
}
break;
default:
assert(0 && "Not implemented!");
}
// VEX opcode prefix can have 2 or 3 bytes
//
// 3 bytes:
// +-----+ +--------------+ +-------------------+
// | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
// +-----+ +--------------+ +-------------------+
// 2 bytes:
// +-----+ +-------------------+
// | C5h | | R | vvvv | L | pp |
// +-----+ +-------------------+
//
// Note: VEX.X isn't used so far
//
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
if (VEX_B /* & VEX_X */) { // 2 byte VEX prefix
EmitByte(0xC5, CurByte, OS);
EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
return;
}
// 3 byte VEX prefix
EmitByte(0xC4, CurByte, OS);
EmitByte(VEX_R << 7 | 1 << 6 /* VEX_X = 1 */ | VEX_5M, CurByte, OS);
EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
}
/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
const TargetInstrDesc &Desc) {
// Pseudo instructions never have a rex byte.
if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
@ -578,10 +422,18 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
return REX;
}
/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
const MCInst &MI, const TargetInstrDesc &Desc,
raw_ostream &OS) const {
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
unsigned TSFlags = Desc.TSFlags;
// Keep track of the current byte being emitted.
unsigned CurByte = 0;
// FIXME: We should emit the prefixes in exactly the same order as GAS does,
// in order to provide diffability.
// Emit the lock opcode prefix as needed.
if (TSFlags & X86II::LOCK)
@ -664,30 +516,6 @@ void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
EmitByte(0x3A, CurByte, OS);
break;
}
}
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
// Keep track of the current byte being emitted.
unsigned CurByte = 0;
// Is this instruction encoded in AVX form?
bool IsAVXForm = false;
if ((TSFlags >> 32) & X86II::VEX_4V)
IsAVXForm = true;
// FIXME: We should emit the prefixes in exactly the same order as GAS does,
// in order to provide diffability.
if (!IsAVXForm)
EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
else
EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc.getNumOperands();
@ -699,7 +527,6 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
--NumOps;
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
unsigned SrcRegNum = 0;
switch (TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
@ -731,14 +558,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::MRMSrcReg:
EmitByte(BaseOpcode, CurByte, OS);
SrcRegNum = CurOp + 1;
if (IsAVXForm) // Skip 1st src (which is encoded in VEX_VVVV)
SrcRegNum++;
EmitRegModRMByte(MI.getOperand(SrcRegNum),
GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
CurOp = SrcRegNum + 1;
EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
CurByte, OS);
CurOp += 2;
break;
case X86II::MRMSrcMem: {

View File

@ -10052,35 +10052,3 @@ pshufb CPI1_0(%rip), %xmm1
// CHECK: ficomps 32493
// CHECK: encoding: [0xde,0x1d,0xed,0x7e,0x00,0x00]
ficomps 32493
// CHECK: vaddss %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xca,0x58,0xd4]
vaddss %xmm4, %xmm6, %xmm2
// CHECK: vmulss %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xca,0x59,0xd4]
vmulss %xmm4, %xmm6, %xmm2
// CHECK: vsubss %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xca,0x5c,0xd4]
vsubss %xmm4, %xmm6, %xmm2
// CHECK: vdivss %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xca,0x5e,0xd4]
vdivss %xmm4, %xmm6, %xmm2
// CHECK: vaddsd %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xcb,0x58,0xd4]
vaddsd %xmm4, %xmm6, %xmm2
// CHECK: vmulsd %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xcb,0x59,0xd4]
vmulsd %xmm4, %xmm6, %xmm2
// CHECK: vsubsd %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xcb,0x5c,0xd4]
vsubsd %xmm4, %xmm6, %xmm2
// CHECK: vdivsd %xmm4, %xmm6, %xmm2
// CHECK: encoding: [0xc5,0xcb,0x5e,0xd4]
vdivsd %xmm4, %xmm6, %xmm2

View File

@ -103,35 +103,3 @@ movd %mm1, %rdx
// CHECK: movd %mm1, %edx
// CHECK: encoding: [0x0f,0x7e,0xca]
movd %mm1, %edx
// CHECK: vaddss %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x32,0x58,0xd0]
vaddss %xmm8, %xmm9, %xmm10
// CHECK: vmulss %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x32,0x59,0xd0]
vmulss %xmm8, %xmm9, %xmm10
// CHECK: vsubss %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x32,0x5c,0xd0]
vsubss %xmm8, %xmm9, %xmm10
// CHECK: vdivss %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x32,0x5e,0xd0]
vdivss %xmm8, %xmm9, %xmm10
// CHECK: vaddsd %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x33,0x58,0xd0]
vaddsd %xmm8, %xmm9, %xmm10
// CHECK: vmulsd %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x33,0x59,0xd0]
vmulsd %xmm8, %xmm9, %xmm10
// CHECK: vsubsd %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x33,0x5c,0xd0]
vsubsd %xmm8, %xmm9, %xmm10
// CHECK: vdivsd %xmm8, %xmm9, %xmm10
// CHECK: encoding: [0xc4,0x41,0x33,0x5e,0xd0]
vdivsd %xmm8, %xmm9, %xmm10

View File

@ -212,7 +212,6 @@ RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix");
HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix");
HasLockPrefix = Rec->getValueAsBit("hasLockPrefix");
IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
@ -533,12 +532,7 @@ void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
"Unexpected number of operands for MRMSrcRegFrm");
HANDLE_OPERAND(roRegister)
HANDLE_OPERAND(rmRegister)
if (HasVEX_4VPrefix)
// FIXME: encoding of registers in AVX is in 1's complement form.
HANDLE_OPTIONAL(rmRegister)
else
HANDLE_OPTIONAL(immediate)
HANDLE_OPTIONAL(immediate)
break;
case X86Local::MRMSrcMem:
// Operand 1 is a register operand in the Reg/Opcode field.

View File

@ -52,8 +52,6 @@ private:
bool HasOpSizePrefix;
/// The hasREX_WPrefix field from the record
bool HasREX_WPrefix;
/// The hasVEX_4VPrefix field from the record
bool HasVEX_4VPrefix;
/// The hasLockPrefix field from the record
bool HasLockPrefix;
/// The isCodeGenOnly filed from the record