mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-19 06:31:18 +00:00
hoist the begin/end/capacity members and a few trivial methods
up into the non-templated SmallVectorBase class. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91426 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
dc2e570411
commit
10aaf05c30
@ -49,24 +49,14 @@ namespace llvm {
|
||||
/// SmallVectorBase - This is all the non-templated stuff common to all
|
||||
/// SmallVectors.
|
||||
class SmallVectorBase {
|
||||
|
||||
};
|
||||
|
||||
|
||||
/// SmallVectorImpl - This class consists of common code factored out of the
|
||||
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
||||
/// template parameter.
|
||||
template <typename T>
|
||||
class SmallVectorImpl {
|
||||
protected:
|
||||
T *Begin, *End, *Capacity;
|
||||
void *BeginX, *EndX, *CapacityX;
|
||||
|
||||
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
|
||||
// don't want it to be automatically run, so we need to represent the space as
|
||||
// something else. An array of char would work great, but might not be
|
||||
// aligned sufficiently. Instead, we either use GCC extensions, or some
|
||||
// number of union instances for the space, which guarantee maximal alignment.
|
||||
protected:
|
||||
#ifdef __GNUC__
|
||||
typedef char U;
|
||||
U FirstEl __attribute__((aligned));
|
||||
@ -79,46 +69,65 @@ protected:
|
||||
} FirstEl;
|
||||
#endif
|
||||
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
||||
|
||||
protected:
|
||||
SmallVectorBase(size_t Size)
|
||||
: BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
|
||||
|
||||
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
||||
/// memory allocated for it.
|
||||
bool isSmall() const {
|
||||
return BeginX == static_cast<const void*>(&FirstEl);
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
bool empty() const { return BeginX == EndX; }
|
||||
};
|
||||
|
||||
/// SmallVectorImpl - This class consists of common code factored out of the
|
||||
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
||||
/// template parameter.
|
||||
template <typename T>
|
||||
class SmallVectorImpl : public SmallVectorBase {
|
||||
void setEnd(T *P) { EndX = P; }
|
||||
public:
|
||||
// Default ctor - Initialize to empty.
|
||||
explicit SmallVectorImpl(unsigned N)
|
||||
: Begin(reinterpret_cast<T*>(&FirstEl)),
|
||||
End(reinterpret_cast<T*>(&FirstEl)),
|
||||
Capacity(reinterpret_cast<T*>(&FirstEl)+N) {
|
||||
explicit SmallVectorImpl(unsigned N) : SmallVectorBase(N*sizeof(T)) {
|
||||
}
|
||||
|
||||
~SmallVectorImpl() {
|
||||
// Destroy the constructed elements in the vector.
|
||||
destroy_range(Begin, End);
|
||||
destroy_range(begin(), end());
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!isSmall())
|
||||
operator delete(Begin);
|
||||
operator delete(begin());
|
||||
}
|
||||
|
||||
typedef size_t size_type;
|
||||
typedef ptrdiff_t difference_type;
|
||||
typedef T value_type;
|
||||
typedef T* iterator;
|
||||
typedef const T* const_iterator;
|
||||
typedef T *iterator;
|
||||
typedef const T *const_iterator;
|
||||
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
|
||||
typedef T& reference;
|
||||
typedef const T& const_reference;
|
||||
typedef T* pointer;
|
||||
typedef const T* const_pointer;
|
||||
|
||||
bool empty() const { return Begin == End; }
|
||||
size_type size() const { return End-Begin; }
|
||||
size_type max_size() const { return size_type(-1) / sizeof(T); }
|
||||
typedef T &reference;
|
||||
typedef const T &const_reference;
|
||||
typedef T *pointer;
|
||||
typedef const T *const_pointer;
|
||||
|
||||
// forward iterator creation methods.
|
||||
iterator begin() { return Begin; }
|
||||
const_iterator begin() const { return Begin; }
|
||||
iterator end() { return End; }
|
||||
const_iterator end() const { return End; }
|
||||
iterator begin() { return (iterator)BeginX; }
|
||||
const_iterator begin() const { return (const_iterator)BeginX; }
|
||||
iterator end() { return (iterator)EndX; }
|
||||
const_iterator end() const { return (const_iterator)EndX; }
|
||||
private:
|
||||
iterator capacity_ptr() { return (iterator)CapacityX; }
|
||||
const_iterator capacity_ptr() const { return (const_iterator)CapacityX; }
|
||||
public:
|
||||
|
||||
// reverse iterator creation methods.
|
||||
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
||||
@ -126,14 +135,25 @@ public:
|
||||
reverse_iterator rend() { return reverse_iterator(begin()); }
|
||||
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
|
||||
|
||||
|
||||
size_type size() const { return end()-begin(); }
|
||||
size_type max_size() const { return size_type(-1) / sizeof(T); }
|
||||
|
||||
/// capacity - Return the total number of elements in the currently allocated
|
||||
/// buffer.
|
||||
size_t capacity() const { return capacity_ptr() - begin(); }
|
||||
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
pointer data() { return pointer(begin()); }
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
const_pointer data() const { return const_pointer(begin()); }
|
||||
|
||||
reference operator[](unsigned idx) {
|
||||
assert(Begin + idx < End);
|
||||
return Begin[idx];
|
||||
assert(begin() + idx < end());
|
||||
return begin()[idx];
|
||||
}
|
||||
const_reference operator[](unsigned idx) const {
|
||||
assert(Begin + idx < End);
|
||||
return Begin[idx];
|
||||
assert(begin() + idx < end());
|
||||
return begin()[idx];
|
||||
}
|
||||
|
||||
reference front() {
|
||||
@ -151,10 +171,10 @@ public:
|
||||
}
|
||||
|
||||
void push_back(const_reference Elt) {
|
||||
if (End < Capacity) {
|
||||
if (EndX < CapacityX) {
|
||||
Retry:
|
||||
new (End) T(Elt);
|
||||
++End;
|
||||
new (end()) T(Elt);
|
||||
setEnd(end()+1);
|
||||
return;
|
||||
}
|
||||
grow();
|
||||
@ -162,8 +182,8 @@ public:
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
--End;
|
||||
End->~T();
|
||||
setEnd(end()-1);
|
||||
end()->~T();
|
||||
}
|
||||
|
||||
T pop_back_val() {
|
||||
@ -173,36 +193,36 @@ public:
|
||||
}
|
||||
|
||||
void clear() {
|
||||
destroy_range(Begin, End);
|
||||
End = Begin;
|
||||
destroy_range(begin(), end());
|
||||
EndX = BeginX;
|
||||
}
|
||||
|
||||
void resize(unsigned N) {
|
||||
if (N < size()) {
|
||||
destroy_range(Begin+N, End);
|
||||
End = Begin+N;
|
||||
destroy_range(begin()+N, end());
|
||||
setEnd(begin()+N);
|
||||
} else if (N > size()) {
|
||||
if (unsigned(Capacity-Begin) < N)
|
||||
if (capacity() < N)
|
||||
grow(N);
|
||||
construct_range(End, Begin+N, T());
|
||||
End = Begin+N;
|
||||
construct_range(end(), begin()+N, T());
|
||||
setEnd(begin()+N);
|
||||
}
|
||||
}
|
||||
|
||||
void resize(unsigned N, const T &NV) {
|
||||
if (N < size()) {
|
||||
destroy_range(Begin+N, End);
|
||||
End = Begin+N;
|
||||
destroy_range(begin()+N, end());
|
||||
setEnd(begin()+N);
|
||||
} else if (N > size()) {
|
||||
if (unsigned(Capacity-Begin) < N)
|
||||
if (capacity() < N)
|
||||
grow(N);
|
||||
construct_range(End, Begin+N, NV);
|
||||
End = Begin+N;
|
||||
construct_range(end(), begin()+N, NV);
|
||||
setEnd(begin()+N);
|
||||
}
|
||||
}
|
||||
|
||||
void reserve(unsigned N) {
|
||||
if (unsigned(Capacity-Begin) < N)
|
||||
if (capacity() < N)
|
||||
grow(N);
|
||||
}
|
||||
|
||||
@ -214,38 +234,38 @@ public:
|
||||
void append(in_iter in_start, in_iter in_end) {
|
||||
size_type NumInputs = std::distance(in_start, in_end);
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(Capacity-End))
|
||||
if (NumInputs > size_type(capacity_ptr()-end()))
|
||||
grow(size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
std::uninitialized_copy(in_start, in_end, End);
|
||||
End += NumInputs;
|
||||
std::uninitialized_copy(in_start, in_end, end());
|
||||
setEnd(end() + NumInputs);
|
||||
}
|
||||
|
||||
/// append - Add the specified range to the end of the SmallVector.
|
||||
///
|
||||
void append(size_type NumInputs, const T &Elt) {
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(Capacity-End))
|
||||
if (NumInputs > size_type(capacity_ptr()-end()))
|
||||
grow(size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
std::uninitialized_fill_n(End, NumInputs, Elt);
|
||||
End += NumInputs;
|
||||
std::uninitialized_fill_n(end(), NumInputs, Elt);
|
||||
setEnd(end() + NumInputs);
|
||||
}
|
||||
|
||||
void assign(unsigned NumElts, const T &Elt) {
|
||||
clear();
|
||||
if (unsigned(Capacity-Begin) < NumElts)
|
||||
if (capacity() < NumElts)
|
||||
grow(NumElts);
|
||||
End = Begin+NumElts;
|
||||
construct_range(Begin, End, Elt);
|
||||
setEnd(begin()+NumElts);
|
||||
construct_range(begin(), end(), Elt);
|
||||
}
|
||||
|
||||
iterator erase(iterator I) {
|
||||
iterator N = I;
|
||||
// Shift all elts down one.
|
||||
std::copy(I+1, End, I);
|
||||
std::copy(I+1, end(), I);
|
||||
// Drop the last elt.
|
||||
pop_back();
|
||||
return(N);
|
||||
@ -254,36 +274,36 @@ public:
|
||||
iterator erase(iterator S, iterator E) {
|
||||
iterator N = S;
|
||||
// Shift all elts down.
|
||||
iterator I = std::copy(E, End, S);
|
||||
iterator I = std::copy(E, end(), S);
|
||||
// Drop the last elts.
|
||||
destroy_range(I, End);
|
||||
End = I;
|
||||
destroy_range(I, end());
|
||||
setEnd(I);
|
||||
return(N);
|
||||
}
|
||||
|
||||
iterator insert(iterator I, const T &Elt) {
|
||||
if (I == End) { // Important special case for empty vector.
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
push_back(Elt);
|
||||
return end()-1;
|
||||
}
|
||||
|
||||
if (End < Capacity) {
|
||||
if (EndX < CapacityX) {
|
||||
Retry:
|
||||
new (End) T(back());
|
||||
++End;
|
||||
new (end()) T(back());
|
||||
setEnd(end()+1);
|
||||
// Push everything else over.
|
||||
std::copy_backward(I, End-1, End);
|
||||
std::copy_backward(I, end()-1, end());
|
||||
*I = Elt;
|
||||
return I;
|
||||
}
|
||||
size_t EltNo = I-Begin;
|
||||
size_t EltNo = I-begin();
|
||||
grow();
|
||||
I = Begin+EltNo;
|
||||
I = begin()+EltNo;
|
||||
goto Retry;
|
||||
}
|
||||
|
||||
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
|
||||
if (I == End) { // Important special case for empty vector.
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
append(NumToInsert, Elt);
|
||||
return end()-1;
|
||||
}
|
||||
@ -302,8 +322,8 @@ public:
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
// reallocate the vector.
|
||||
if (size_t(end()-I) >= NumToInsert) {
|
||||
T *OldEnd = End;
|
||||
append(End-NumToInsert, End);
|
||||
T *OldEnd = end();
|
||||
append(end()-NumToInsert, end());
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
@ -316,10 +336,10 @@ public:
|
||||
// not inserting at the end.
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = End;
|
||||
End += NumToInsert;
|
||||
T *OldEnd = end();
|
||||
setEnd(end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
|
||||
std::uninitialized_copy(I, OldEnd, end()-NumOverwritten);
|
||||
|
||||
// Replace the overwritten part.
|
||||
std::fill_n(I, NumOverwritten, Elt);
|
||||
@ -331,7 +351,7 @@ public:
|
||||
|
||||
template<typename ItTy>
|
||||
iterator insert(iterator I, ItTy From, ItTy To) {
|
||||
if (I == End) { // Important special case for empty vector.
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
append(From, To);
|
||||
return end()-1;
|
||||
}
|
||||
@ -351,8 +371,8 @@ public:
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
// reallocate the vector.
|
||||
if (size_t(end()-I) >= NumToInsert) {
|
||||
T *OldEnd = End;
|
||||
append(End-NumToInsert, End);
|
||||
T *OldEnd = end();
|
||||
append(end()-NumToInsert, end());
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
@ -365,10 +385,10 @@ public:
|
||||
// not inserting at the end.
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = End;
|
||||
End += NumToInsert;
|
||||
T *OldEnd = end();
|
||||
setEnd(end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
std::uninitialized_copy(I, OldEnd, End-NumOverwritten);
|
||||
std::uninitialized_copy(I, OldEnd, end()-NumOverwritten);
|
||||
|
||||
// Replace the overwritten part.
|
||||
std::copy(From, From+NumOverwritten, I);
|
||||
@ -378,21 +398,11 @@ public:
|
||||
return I;
|
||||
}
|
||||
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
pointer data() {
|
||||
return pointer(Begin);
|
||||
}
|
||||
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
const_pointer data() const {
|
||||
return const_pointer(Begin);
|
||||
}
|
||||
|
||||
const SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
||||
|
||||
bool operator==(const SmallVectorImpl &RHS) const {
|
||||
if (size() != RHS.size()) return false;
|
||||
for (T *This = Begin, *That = RHS.Begin, *E = Begin+size();
|
||||
for (const T *This = begin(), *That = RHS.begin(), *E = end();
|
||||
This != E; ++This, ++That)
|
||||
if (*This != *That)
|
||||
return false;
|
||||
@ -405,10 +415,6 @@ public:
|
||||
RHS.begin(), RHS.end());
|
||||
}
|
||||
|
||||
/// capacity - Return the total number of elements in the currently allocated
|
||||
/// buffer.
|
||||
size_t capacity() const { return Capacity - Begin; }
|
||||
|
||||
/// set_size - Set the array size to \arg N, which the current array must have
|
||||
/// enough capacity for.
|
||||
///
|
||||
@ -420,17 +426,10 @@ public:
|
||||
/// which will only be overwritten.
|
||||
void set_size(unsigned N) {
|
||||
assert(N <= capacity());
|
||||
End = Begin + N;
|
||||
setEnd(begin() + N);
|
||||
}
|
||||
|
||||
private:
|
||||
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
||||
/// memory allocated for it.
|
||||
bool isSmall() const {
|
||||
return static_cast<const void*>(Begin) ==
|
||||
static_cast<const void*>(&FirstEl);
|
||||
}
|
||||
|
||||
/// grow - double the size of the allocated memory, guaranteeing space for at
|
||||
/// least one more element or MinSize if specified.
|
||||
void grow(size_type MinSize = 0);
|
||||
@ -441,6 +440,7 @@ private:
|
||||
}
|
||||
|
||||
void destroy_range(T *S, T *E) {
|
||||
// TODO: POD
|
||||
while (S != E) {
|
||||
--E;
|
||||
E->~T();
|
||||
@ -451,7 +451,7 @@ private:
|
||||
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
||||
template <typename T>
|
||||
void SmallVectorImpl<T>::grow(size_t MinSize) {
|
||||
size_t CurCapacity = Capacity-Begin;
|
||||
size_t CurCapacity = capacity();
|
||||
size_t CurSize = size();
|
||||
size_t NewCapacity = 2*CurCapacity;
|
||||
if (NewCapacity < MinSize)
|
||||
@ -460,21 +460,21 @@ void SmallVectorImpl<T>::grow(size_t MinSize) {
|
||||
|
||||
// Copy the elements over.
|
||||
if (is_class<T>::value)
|
||||
std::uninitialized_copy(Begin, End, NewElts);
|
||||
std::uninitialized_copy(begin(), end(), NewElts);
|
||||
else
|
||||
// Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
|
||||
memcpy(NewElts, Begin, CurSize * sizeof(T));
|
||||
memcpy(NewElts, begin(), CurSize * sizeof(T));
|
||||
|
||||
// Destroy the original elements.
|
||||
destroy_range(Begin, End);
|
||||
destroy_range(begin(), end());
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!isSmall())
|
||||
operator delete(Begin);
|
||||
operator delete(begin());
|
||||
|
||||
Begin = NewElts;
|
||||
End = NewElts+CurSize;
|
||||
Capacity = Begin+NewCapacity;
|
||||
setEnd(NewElts+CurSize);
|
||||
BeginX = NewElts;
|
||||
CapacityX = begin()+NewCapacity;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -483,35 +483,35 @@ void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
||||
|
||||
// We can only avoid copying elements if neither vector is small.
|
||||
if (!isSmall() && !RHS.isSmall()) {
|
||||
std::swap(Begin, RHS.Begin);
|
||||
std::swap(End, RHS.End);
|
||||
std::swap(Capacity, RHS.Capacity);
|
||||
std::swap(BeginX, RHS.BeginX);
|
||||
std::swap(EndX, RHS.EndX);
|
||||
std::swap(CapacityX, RHS.CapacityX);
|
||||
return;
|
||||
}
|
||||
if (RHS.size() > size_type(Capacity-Begin))
|
||||
if (RHS.size() > capacity())
|
||||
grow(RHS.size());
|
||||
if (size() > size_type(RHS.Capacity-RHS.begin()))
|
||||
if (size() > RHS.capacity())
|
||||
RHS.grow(size());
|
||||
|
||||
// Swap the shared elements.
|
||||
size_t NumShared = size();
|
||||
if (NumShared > RHS.size()) NumShared = RHS.size();
|
||||
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
|
||||
std::swap(Begin[i], RHS[i]);
|
||||
std::swap((*this)[i], RHS[i]);
|
||||
|
||||
// Copy over the extra elts.
|
||||
if (size() > RHS.size()) {
|
||||
size_t EltDiff = size() - RHS.size();
|
||||
std::uninitialized_copy(Begin+NumShared, End, RHS.End);
|
||||
RHS.End += EltDiff;
|
||||
destroy_range(Begin+NumShared, End);
|
||||
End = Begin+NumShared;
|
||||
std::uninitialized_copy(begin()+NumShared, end(), RHS.end());
|
||||
RHS.setEnd(RHS.end()+EltDiff);
|
||||
destroy_range(begin()+NumShared, end());
|
||||
setEnd(begin()+NumShared);
|
||||
} else if (RHS.size() > size()) {
|
||||
size_t EltDiff = RHS.size() - size();
|
||||
std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End);
|
||||
End += EltDiff;
|
||||
destroy_range(RHS.Begin+NumShared, RHS.End);
|
||||
RHS.End = RHS.Begin+NumShared;
|
||||
std::uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end());
|
||||
setEnd(end() + EltDiff);
|
||||
destroy_range(RHS.begin()+NumShared, RHS.end());
|
||||
RHS.setEnd(RHS.begin()+NumShared);
|
||||
}
|
||||
}
|
||||
|
||||
@ -523,42 +523,42 @@ SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) {
|
||||
|
||||
// If we already have sufficient space, assign the common elements, then
|
||||
// destroy any excess.
|
||||
unsigned RHSSize = unsigned(RHS.size());
|
||||
unsigned CurSize = unsigned(size());
|
||||
size_t RHSSize = RHS.size();
|
||||
size_t CurSize = size();
|
||||
if (CurSize >= RHSSize) {
|
||||
// Assign common elements.
|
||||
iterator NewEnd;
|
||||
if (RHSSize)
|
||||
NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin);
|
||||
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin());
|
||||
else
|
||||
NewEnd = Begin;
|
||||
NewEnd = begin();
|
||||
|
||||
// Destroy excess elements.
|
||||
destroy_range(NewEnd, End);
|
||||
destroy_range(NewEnd, end());
|
||||
|
||||
// Trim.
|
||||
End = NewEnd;
|
||||
setEnd(NewEnd);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// If we have to grow to have enough elements, destroy the current elements.
|
||||
// This allows us to avoid copying them during the grow.
|
||||
if (unsigned(Capacity-Begin) < RHSSize) {
|
||||
if (capacity() < RHSSize) {
|
||||
// Destroy current elements.
|
||||
destroy_range(Begin, End);
|
||||
End = Begin;
|
||||
destroy_range(begin(), end());
|
||||
setEnd(begin());
|
||||
CurSize = 0;
|
||||
grow(RHSSize);
|
||||
} else if (CurSize) {
|
||||
// Otherwise, use assignment for the already-constructed elements.
|
||||
std::copy(RHS.Begin, RHS.Begin+CurSize, Begin);
|
||||
std::copy(RHS.begin(), RHS.begin()+CurSize, begin());
|
||||
}
|
||||
|
||||
// Copy construct the new elements in place.
|
||||
std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize);
|
||||
std::uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize);
|
||||
|
||||
// Set end.
|
||||
End = Begin+RHSSize;
|
||||
setEnd(begin()+RHSSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user