mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
All the SparcV9 BURG instruction selector pieces have been collected into the
new file SparcV9BurgISel.cpp, with exposed interfaces in SparcV9BurgISel.h. The InstrSelection directory is now dead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15468 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
7b0c84dcf5
commit
10b11920c9
@ -1,333 +0,0 @@
|
||||
//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The key goal is to group instructions into a single
|
||||
// tree if one or more of them might be potentially combined into a single
|
||||
// complex instruction in the target machine.
|
||||
// Since this grouping is completely machine-independent, we do it as
|
||||
// aggressive as possible to exploit any possible target instructions.
|
||||
// In particular, we group two instructions O and I if:
|
||||
// (1) Instruction O computes an operand used by instruction I,
|
||||
// and (2) O and I are part of the same basic block,
|
||||
// and (3) O has only a single use, viz., I.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Constant.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Config/alloca.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// class InstrTreeNode
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstrTreeNode::dump(int dumpChildren, int indent) const {
|
||||
dumpNode(indent);
|
||||
|
||||
if (dumpChildren) {
|
||||
if (LeftChild)
|
||||
LeftChild->dump(dumpChildren, indent+1);
|
||||
if (RightChild)
|
||||
RightChild->dump(dumpChildren, indent+1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
InstructionNode::InstructionNode(Instruction* I)
|
||||
: InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
|
||||
{
|
||||
opLabel = I->getOpcode();
|
||||
|
||||
// Distinguish special cases of some instructions such as Ret and Br
|
||||
//
|
||||
if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
|
||||
opLabel = RetValueOp; // ret(value) operation
|
||||
}
|
||||
else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
|
||||
{
|
||||
opLabel = BrCondOp; // br(cond) operation
|
||||
} else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
|
||||
opLabel = SetCCOp; // common label for all SetCC ops
|
||||
} else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
|
||||
opLabel = AllocaN; // Alloca(ptr, N) operation
|
||||
} else if (opLabel == Instruction::GetElementPtr &&
|
||||
cast<GetElementPtrInst>(I)->hasIndices()) {
|
||||
opLabel = opLabel + 100; // getElem with index vector
|
||||
} else if (opLabel == Instruction::Xor &&
|
||||
BinaryOperator::isNot(I)) {
|
||||
opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
|
||||
: BNotOp; // bitwise Not operator
|
||||
} else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
|
||||
opLabel == Instruction::Xor) {
|
||||
// Distinguish bitwise operators from logical operators!
|
||||
if (I->getType() != Type::BoolTy)
|
||||
opLabel = opLabel + 100; // bitwise operator
|
||||
} else if (opLabel == Instruction::Cast) {
|
||||
const Type *ITy = I->getType();
|
||||
switch(ITy->getTypeID())
|
||||
{
|
||||
case Type::BoolTyID: opLabel = ToBoolTy; break;
|
||||
case Type::UByteTyID: opLabel = ToUByteTy; break;
|
||||
case Type::SByteTyID: opLabel = ToSByteTy; break;
|
||||
case Type::UShortTyID: opLabel = ToUShortTy; break;
|
||||
case Type::ShortTyID: opLabel = ToShortTy; break;
|
||||
case Type::UIntTyID: opLabel = ToUIntTy; break;
|
||||
case Type::IntTyID: opLabel = ToIntTy; break;
|
||||
case Type::ULongTyID: opLabel = ToULongTy; break;
|
||||
case Type::LongTyID: opLabel = ToLongTy; break;
|
||||
case Type::FloatTyID: opLabel = ToFloatTy; break;
|
||||
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
|
||||
case Type::ArrayTyID: opLabel = ToArrayTy; break;
|
||||
case Type::PointerTyID: opLabel = ToPointerTy; break;
|
||||
default:
|
||||
// Just use `Cast' opcode otherwise. It's probably ignored.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
InstructionNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
std::cerr << getInstruction()->getOpcodeName()
|
||||
<< " [label " << getOpLabel() << "]" << "\n";
|
||||
}
|
||||
|
||||
void
|
||||
VRegListNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "List" << "\n";
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
VRegNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
std::cerr << "VReg " << *getValue() << "\n";
|
||||
}
|
||||
|
||||
void
|
||||
ConstantNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
std::cerr << "Constant " << *getValue() << "\n";
|
||||
}
|
||||
|
||||
void LabelNode::dumpNode(int indent) const {
|
||||
for (int i=0; i < indent; i++)
|
||||
std::cerr << " ";
|
||||
|
||||
std::cerr << "Label " << *getValue() << "\n";
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// class InstrForest
|
||||
//
|
||||
// A forest of instruction trees, usually for a single method.
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
InstrForest::InstrForest(Function *F) {
|
||||
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
|
||||
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
buildTreeForInstruction(I);
|
||||
}
|
||||
}
|
||||
|
||||
InstrForest::~InstrForest() {
|
||||
for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
|
||||
}
|
||||
|
||||
void InstrForest::dump() const {
|
||||
for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
|
||||
(*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
|
||||
}
|
||||
|
||||
inline void InstrForest::eraseRoot(InstructionNode* node) {
|
||||
for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
|
||||
RI != RE; ++RI)
|
||||
if (*RI == node)
|
||||
treeRoots.erase(RI.base()-1);
|
||||
}
|
||||
|
||||
inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
|
||||
InstructionNode *treeNode) {
|
||||
(*this)[instr] = treeNode;
|
||||
treeRoots.push_back(treeNode); // mark node as root of a new tree
|
||||
}
|
||||
|
||||
|
||||
inline void InstrForest::setLeftChild(InstrTreeNode *parent,
|
||||
InstrTreeNode *child) {
|
||||
parent->LeftChild = child;
|
||||
child->Parent = parent;
|
||||
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
||||
eraseRoot(instrNode); // no longer a tree root
|
||||
}
|
||||
|
||||
inline void InstrForest::setRightChild(InstrTreeNode *parent,
|
||||
InstrTreeNode *child) {
|
||||
parent->RightChild = child;
|
||||
child->Parent = parent;
|
||||
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
||||
eraseRoot(instrNode); // no longer a tree root
|
||||
}
|
||||
|
||||
|
||||
InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
|
||||
InstructionNode *treeNode = getTreeNodeForInstr(instr);
|
||||
if (treeNode) {
|
||||
// treeNode has already been constructed for this instruction
|
||||
assert(treeNode->getInstruction() == instr);
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
// Otherwise, create a new tree node for this instruction.
|
||||
//
|
||||
treeNode = new InstructionNode(instr);
|
||||
noteTreeNodeForInstr(instr, treeNode);
|
||||
|
||||
if (instr->getOpcode() == Instruction::Call) {
|
||||
// Operands of call instruction
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
// If the instruction has more than 2 instruction operands,
|
||||
// then we need to create artificial list nodes to hold them.
|
||||
// (Note that we only count operands that get tree nodes, and not
|
||||
// others such as branch labels for a branch or switch instruction.)
|
||||
//
|
||||
// To do this efficiently, we'll walk all operands, build treeNodes
|
||||
// for all appropriate operands and save them in an array. We then
|
||||
// insert children at the end, creating list nodes where needed.
|
||||
// As a performance optimization, allocate a child array only
|
||||
// if a fixed array is too small.
|
||||
//
|
||||
int numChildren = 0;
|
||||
InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
|
||||
|
||||
//
|
||||
// Walk the operands of the instruction
|
||||
//
|
||||
for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
|
||||
{
|
||||
Value* operand = *O;
|
||||
|
||||
// Check if the operand is a data value, not an branch label, type,
|
||||
// method or module. If the operand is an address type (i.e., label
|
||||
// or method) that is used in an non-branching operation, e.g., `add'.
|
||||
// that should be considered a data value.
|
||||
|
||||
// Check latter condition here just to simplify the next IF.
|
||||
bool includeAddressOperand =
|
||||
(isa<BasicBlock>(operand) || isa<Function>(operand))
|
||||
&& !instr->isTerminator();
|
||||
|
||||
if (includeAddressOperand || isa<Instruction>(operand) ||
|
||||
isa<Constant>(operand) || isa<Argument>(operand))
|
||||
{
|
||||
// This operand is a data value
|
||||
|
||||
// An instruction that computes the incoming value is added as a
|
||||
// child of the current instruction if:
|
||||
// the value has only a single use
|
||||
// AND both instructions are in the same basic block.
|
||||
// AND the current instruction is not a PHI (because the incoming
|
||||
// value is conceptually in a predecessor block,
|
||||
// even though it may be in the same static block)
|
||||
//
|
||||
// (Note that if the value has only a single use (viz., `instr'),
|
||||
// the def of the value can be safely moved just before instr
|
||||
// and therefore it is safe to combine these two instructions.)
|
||||
//
|
||||
// In all other cases, the virtual register holding the value
|
||||
// is used directly, i.e., made a child of the instruction node.
|
||||
//
|
||||
InstrTreeNode* opTreeNode;
|
||||
if (isa<Instruction>(operand) && operand->hasOneUse() &&
|
||||
cast<Instruction>(operand)->getParent() == instr->getParent() &&
|
||||
instr->getOpcode() != Instruction::PHI &&
|
||||
instr->getOpcode() != Instruction::Call)
|
||||
{
|
||||
// Recursively create a treeNode for it.
|
||||
opTreeNode = buildTreeForInstruction((Instruction*)operand);
|
||||
} else if (Constant *CPV = dyn_cast<Constant>(operand)) {
|
||||
if (isa<GlobalValue>(CPV))
|
||||
opTreeNode = new VRegNode(operand);
|
||||
else
|
||||
// Create a leaf node for a constant
|
||||
opTreeNode = new ConstantNode(CPV);
|
||||
} else {
|
||||
// Create a leaf node for the virtual register
|
||||
opTreeNode = new VRegNode(operand);
|
||||
}
|
||||
|
||||
childArray[numChildren++] = opTreeNode;
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------
|
||||
// Add any selected operands as children in the tree.
|
||||
// Certain instructions can have more than 2 in some instances (viz.,
|
||||
// a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
|
||||
// array or struct). Make the operands of every such instruction into
|
||||
// a right-leaning binary tree with the operand nodes at the leaves
|
||||
// and VRegList nodes as internal nodes.
|
||||
//--------------------------------------------------------------------
|
||||
|
||||
InstrTreeNode *parent = treeNode;
|
||||
|
||||
if (numChildren > 2) {
|
||||
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
|
||||
assert(instrOpcode == Instruction::PHI ||
|
||||
instrOpcode == Instruction::Call ||
|
||||
instrOpcode == Instruction::Load ||
|
||||
instrOpcode == Instruction::Store ||
|
||||
instrOpcode == Instruction::GetElementPtr);
|
||||
}
|
||||
|
||||
// Insert the first child as a direct child
|
||||
if (numChildren >= 1)
|
||||
setLeftChild(parent, childArray[0]);
|
||||
|
||||
int n;
|
||||
|
||||
// Create a list node for children 2 .. N-1, if any
|
||||
for (n = numChildren-1; n >= 2; n--) {
|
||||
// We have more than two children
|
||||
InstrTreeNode *listNode = new VRegListNode();
|
||||
setRightChild(parent, listNode);
|
||||
setLeftChild(listNode, childArray[numChildren - n]);
|
||||
parent = listNode;
|
||||
}
|
||||
|
||||
// Now insert the last remaining child (if any).
|
||||
if (numChildren >= 2) {
|
||||
assert(n == 1);
|
||||
setRightChild(parent, childArray[numChildren - 1]);
|
||||
}
|
||||
|
||||
delete [] childArray;
|
||||
return treeNode;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,413 +0,0 @@
|
||||
//===- InstrSelection.cpp - Machine Independent Inst Selection Driver -----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Machine-independent driver file for instruction selection. This file
|
||||
// constructs a forest of BURG instruction trees and then uses the
|
||||
// BURG-generated tree grammar (BURM) to find the optimal instruction sequences
|
||||
// for a given machine.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/CodeGen/IntrinsicLowering.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "../SparcV9RegInfo.h"
|
||||
#include "Support/CommandLine.h"
|
||||
#include "Support/LeakDetector.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace llvm {
|
||||
std::vector<MachineInstr*>
|
||||
FixConstantOperandsForInstr(Instruction *I, MachineInstr *MI,
|
||||
TargetMachine &TM);
|
||||
}
|
||||
|
||||
namespace {
|
||||
//===--------------------------------------------------------------------===//
|
||||
// SelectDebugLevel - Allow command line control over debugging.
|
||||
//
|
||||
enum SelectDebugLevel_t {
|
||||
Select_NoDebugInfo,
|
||||
Select_PrintMachineCode,
|
||||
Select_DebugInstTrees,
|
||||
Select_DebugBurgTrees,
|
||||
};
|
||||
|
||||
// Enable Debug Options to be specified on the command line
|
||||
cl::opt<SelectDebugLevel_t>
|
||||
SelectDebugLevel("dselect", cl::Hidden,
|
||||
cl::desc("enable instruction selection debug information"),
|
||||
cl::values(
|
||||
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
|
||||
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
|
||||
clEnumValN(Select_DebugInstTrees, "i",
|
||||
"print debugging info for instruction selection"),
|
||||
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
|
||||
clEnumValEnd));
|
||||
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// InstructionSelection Pass
|
||||
//
|
||||
// This is the actual pass object that drives the instruction selection
|
||||
// process.
|
||||
//
|
||||
class InstructionSelection : public FunctionPass {
|
||||
TargetMachine &Target;
|
||||
void InsertCodeForPhis(Function &F);
|
||||
void InsertPhiElimInstructions(BasicBlock *BB,
|
||||
const std::vector<MachineInstr*>& CpVec);
|
||||
void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
|
||||
void PostprocessMachineCodeForTree(InstructionNode* instrNode,
|
||||
int ruleForNode, short* nts);
|
||||
public:
|
||||
InstructionSelection(TargetMachine &TM) : Target(TM) {}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesCFG();
|
||||
}
|
||||
|
||||
bool runOnFunction(Function &F);
|
||||
virtual const char *getPassName() const { return "Instruction Selection"; }
|
||||
};
|
||||
}
|
||||
|
||||
TmpInstruction::TmpInstruction(Value *s1, Value *s2, const std::string &name)
|
||||
: Instruction(s1->getType(), Instruction::UserOp1, name)
|
||||
{
|
||||
Operands.push_back(Use(s1, this)); // s1 must be non-null
|
||||
if (s2)
|
||||
Operands.push_back(Use(s2, this));
|
||||
|
||||
// TmpInstructions should not be garbage checked.
|
||||
LeakDetector::removeGarbageObject(this);
|
||||
}
|
||||
|
||||
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
|
||||
Value *s1, Value *s2, const std::string &name)
|
||||
: Instruction(s1->getType(), Instruction::UserOp1, name)
|
||||
{
|
||||
mcfi.addTemp(this);
|
||||
|
||||
Operands.push_back(Use(s1, this)); // s1 must be non-null
|
||||
if (s2)
|
||||
Operands.push_back(Use(s2, this));
|
||||
|
||||
// TmpInstructions should not be garbage checked.
|
||||
LeakDetector::removeGarbageObject(this);
|
||||
}
|
||||
|
||||
// Constructor that requires the type of the temporary to be specified.
|
||||
// Both S1 and S2 may be NULL.
|
||||
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
|
||||
const Type *Ty, Value *s1, Value* s2,
|
||||
const std::string &name)
|
||||
: Instruction(Ty, Instruction::UserOp1, name)
|
||||
{
|
||||
mcfi.addTemp(this);
|
||||
|
||||
if (s1)
|
||||
Operands.push_back(Use(s1, this));
|
||||
if (s2)
|
||||
Operands.push_back(Use(s2, this));
|
||||
|
||||
// TmpInstructions should not be garbage checked.
|
||||
LeakDetector::removeGarbageObject(this);
|
||||
}
|
||||
|
||||
bool InstructionSelection::runOnFunction(Function &F) {
|
||||
// First pass - Walk the function, lowering any calls to intrinsic functions
|
||||
// which the instruction selector cannot handle.
|
||||
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
||||
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
||||
if (Function *F = CI->getCalledFunction())
|
||||
switch (F->getIntrinsicID()) {
|
||||
case Intrinsic::not_intrinsic:
|
||||
case Intrinsic::vastart:
|
||||
case Intrinsic::vacopy:
|
||||
case Intrinsic::vaend:
|
||||
// We directly implement these intrinsics. Note that this knowledge
|
||||
// is incestuously entangled with the code in
|
||||
// SparcInstrSelection.cpp and must be updated when it is updated.
|
||||
// Since ALL of the code in this library is incestuously intertwined
|
||||
// with it already and sparc specific, we will live with this.
|
||||
break;
|
||||
default:
|
||||
// All other intrinsic calls we must lower.
|
||||
Instruction *Before = CI->getPrev();
|
||||
Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
||||
if (Before) { // Move iterator to instruction after call
|
||||
I = Before; ++I;
|
||||
} else {
|
||||
I = BB->begin();
|
||||
}
|
||||
}
|
||||
|
||||
// Build the instruction trees to be given as inputs to BURG.
|
||||
InstrForest instrForest(&F);
|
||||
if (SelectDebugLevel >= Select_DebugInstTrees) {
|
||||
std::cerr << "\n\n*** Input to instruction selection for function "
|
||||
<< F.getName() << "\n\n" << F
|
||||
<< "\n\n*** Instruction trees for function "
|
||||
<< F.getName() << "\n\n";
|
||||
instrForest.dump();
|
||||
}
|
||||
|
||||
// Invoke BURG instruction selection for each tree
|
||||
for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
|
||||
RI != instrForest.roots_end(); ++RI) {
|
||||
InstructionNode* basicNode = *RI;
|
||||
assert(basicNode->parent() == NULL && "A `root' node has a parent?");
|
||||
|
||||
// Invoke BURM to label each tree node with a state
|
||||
burm_label(basicNode);
|
||||
if (SelectDebugLevel >= Select_DebugBurgTrees) {
|
||||
printcover(basicNode, 1, 0);
|
||||
std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
|
||||
printMatches(basicNode);
|
||||
}
|
||||
|
||||
// Then recursively walk the tree to select instructions
|
||||
SelectInstructionsForTree(basicNode, /*goalnt*/1);
|
||||
}
|
||||
|
||||
// Create the MachineBasicBlocks and add all of the MachineInstrs
|
||||
// defined in the MachineCodeForInstruction objects to the MachineBasicBlocks.
|
||||
MachineFunction &MF = MachineFunction::get(&F);
|
||||
std::map<const BasicBlock *, MachineBasicBlock *> MBBMap;
|
||||
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
|
||||
MachineBasicBlock *MBB = new MachineBasicBlock(BI);
|
||||
MF.getBasicBlockList().push_back(MBB);
|
||||
MBBMap[BI] = MBB;
|
||||
|
||||
for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
|
||||
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
|
||||
MBB->insert(MBB->end(), mvec.begin(), mvec.end());
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize Machine-CFG for the function.
|
||||
for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) {
|
||||
MachineBasicBlock &MBB = *i;
|
||||
const BasicBlock *BB = MBB.getBasicBlock ();
|
||||
// for each successor S of BB, add MBBMap[S] as a successor of MBB.
|
||||
for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se; ++si) {
|
||||
MachineBasicBlock *succMBB = MBBMap[*si];
|
||||
assert (succMBB && "Can't find MachineBasicBlock for this successor");
|
||||
MBB.addSuccessor (succMBB);
|
||||
}
|
||||
}
|
||||
|
||||
// Insert phi elimination code
|
||||
InsertCodeForPhis(F);
|
||||
|
||||
if (SelectDebugLevel >= Select_PrintMachineCode) {
|
||||
std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
|
||||
MachineFunction::get(&F).dump();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// InsertCodeForPhis - This method inserts Phi elimination code for
|
||||
/// all Phi nodes in the given function. After this method is called,
|
||||
/// the Phi nodes still exist in the LLVM code, but copies are added to the
|
||||
/// machine code.
|
||||
///
|
||||
void InstructionSelection::InsertCodeForPhis(Function &F) {
|
||||
// Iterate over every Phi node PN in F:
|
||||
MachineFunction &MF = MachineFunction::get(&F);
|
||||
for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
|
||||
for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
|
||||
const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
|
||||
// Create a new temporary register to hold the result of the Phi copy.
|
||||
// The leak detector shouldn't track these nodes. They are not garbage,
|
||||
// even though their parent field is never filled in.
|
||||
Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp");
|
||||
LeakDetector::removeGarbageObject(PhiCpRes);
|
||||
|
||||
// For each of PN's incoming values, insert a copy in the corresponding
|
||||
// predecessor block.
|
||||
MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN);
|
||||
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
|
||||
std::vector<MachineInstr*> mvec, CpVec;
|
||||
Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i),
|
||||
PhiCpRes, mvec);
|
||||
for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
|
||||
MI != mvec.end(); ++MI) {
|
||||
std::vector<MachineInstr*> CpVec2 =
|
||||
FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
|
||||
CpVec2.push_back(*MI);
|
||||
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
|
||||
}
|
||||
// Insert the copy instructions into the predecessor BB.
|
||||
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
|
||||
MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ());
|
||||
}
|
||||
// Insert a copy instruction from PhiCpRes to PN.
|
||||
std::vector<MachineInstr*> mvec;
|
||||
Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
|
||||
mvec);
|
||||
BB->insert(BB->begin(), mvec.begin(), mvec.end());
|
||||
MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ());
|
||||
} // for each Phi Instr in BB
|
||||
} // for all BBs in function
|
||||
}
|
||||
|
||||
/// InsertPhiElimInstructions - Inserts the instructions in CpVec into the
|
||||
/// MachineBasicBlock corresponding to BB, just before its terminator
|
||||
/// instruction. This is used by InsertCodeForPhis() to insert copies, above.
|
||||
///
|
||||
void
|
||||
InstructionSelection::InsertPhiElimInstructions(BasicBlock *BB,
|
||||
const std::vector<MachineInstr*>& CpVec)
|
||||
{
|
||||
Instruction *TermInst = (Instruction*)BB->getTerminator();
|
||||
MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
|
||||
MachineInstr *FirstMIOfTerm = MC4Term.front();
|
||||
assert (FirstMIOfTerm && "No Machine Instrs for terminator");
|
||||
|
||||
MachineBasicBlock *MBB = FirstMIOfTerm->getParent();
|
||||
assert(MBB && "Machine BB for predecessor's terminator not found");
|
||||
MachineBasicBlock::iterator MCIt = FirstMIOfTerm;
|
||||
assert(MCIt != MBB->end() && "Start inst of terminator not found");
|
||||
|
||||
// insert the copy instructions just before the first machine instruction
|
||||
// generated for the terminator
|
||||
MBB->insert(MCIt, CpVec.begin(), CpVec.end());
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function SelectInstructionsForTree
|
||||
//
|
||||
// Recursively walk the tree to select instructions.
|
||||
// Do this top-down so that child instructions can exploit decisions
|
||||
// made at the child instructions.
|
||||
//
|
||||
// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
|
||||
// a branch-on-integer-register instruction, then the setle node
|
||||
// can use that information to avoid generating the SUBcc instruction.
|
||||
//
|
||||
// Note that this cannot be done bottom-up because setle must do this
|
||||
// only if it is a child of the branch (otherwise, the result of setle
|
||||
// may be used by multiple instructions).
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
void
|
||||
InstructionSelection::SelectInstructionsForTree(InstrTreeNode* treeRoot,
|
||||
int goalnt)
|
||||
{
|
||||
// Get the rule that matches this node.
|
||||
//
|
||||
int ruleForNode = burm_rule(treeRoot->state, goalnt);
|
||||
|
||||
if (ruleForNode == 0) {
|
||||
std::cerr << "Could not match instruction tree for instr selection\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
// Get this rule's non-terminals and the corresponding child nodes (if any)
|
||||
//
|
||||
short *nts = burm_nts[ruleForNode];
|
||||
|
||||
// First, select instructions for the current node and rule.
|
||||
// (If this is a list node, not an instruction, then skip this step).
|
||||
// This function is specific to the target architecture.
|
||||
//
|
||||
if (treeRoot->opLabel != VRegListOp) {
|
||||
std::vector<MachineInstr*> minstrVec;
|
||||
|
||||
InstructionNode* instrNode = (InstructionNode*)treeRoot;
|
||||
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
|
||||
|
||||
GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
|
||||
|
||||
MachineCodeForInstruction &mvec =
|
||||
MachineCodeForInstruction::get(instrNode->getInstruction());
|
||||
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
|
||||
}
|
||||
|
||||
// Then, recursively compile the child nodes, if any.
|
||||
//
|
||||
if (nts[0]) {
|
||||
// i.e., there is at least one kid
|
||||
InstrTreeNode* kids[2];
|
||||
int currentRule = ruleForNode;
|
||||
burm_kids(treeRoot, currentRule, kids);
|
||||
|
||||
// First skip over any chain rules so that we don't visit
|
||||
// the current node again.
|
||||
//
|
||||
while (ThisIsAChainRule(currentRule)) {
|
||||
currentRule = burm_rule(treeRoot->state, nts[0]);
|
||||
nts = burm_nts[currentRule];
|
||||
burm_kids(treeRoot, currentRule, kids);
|
||||
}
|
||||
|
||||
// Now we have the first non-chain rule so we have found
|
||||
// the actual child nodes. Recursively compile them.
|
||||
//
|
||||
for (unsigned i = 0; nts[i]; i++) {
|
||||
assert(i < 2);
|
||||
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
|
||||
if (nodeType == InstrTreeNode::NTVRegListNode ||
|
||||
nodeType == InstrTreeNode::NTInstructionNode)
|
||||
SelectInstructionsForTree(kids[i], nts[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Finally, do any post-processing on this node after its children
|
||||
// have been translated
|
||||
//
|
||||
if (treeRoot->opLabel != VRegListOp)
|
||||
PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function PostprocessMachineCodeForTree
|
||||
//
|
||||
// Apply any final cleanups to machine code for the root of a subtree
|
||||
// after selection for all its children has been completed.
|
||||
//
|
||||
void
|
||||
InstructionSelection::PostprocessMachineCodeForTree(InstructionNode* instrNode,
|
||||
int ruleForNode,
|
||||
short* nts)
|
||||
{
|
||||
// Fix up any constant operands in the machine instructions to either
|
||||
// use an immediate field or to load the constant into a register
|
||||
// Walk backwards and use direct indexes to allow insertion before current
|
||||
//
|
||||
Instruction* vmInstr = instrNode->getInstruction();
|
||||
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
|
||||
for (unsigned i = mvec.size(); i != 0; --i) {
|
||||
std::vector<MachineInstr*> loadConstVec =
|
||||
FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
|
||||
|
||||
mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// createInstructionSelectionPass - Public entrypoint for instruction selection
|
||||
// and this file as a whole...
|
||||
//
|
||||
FunctionPass *llvm::createInstructionSelectionPass(TargetMachine &TM) {
|
||||
return new InstructionSelection(TM);
|
||||
}
|
@ -1,267 +0,0 @@
|
||||
//===-- InstrSelectionSupport.cpp -----------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Target-independent instruction selection code. See SparcInstrSelection.cpp
|
||||
// for usage.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
#include "../MachineInstrAnnot.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/InstrForest.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "../SparcV9RegInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/GlobalValue.h"
|
||||
#include "../SparcV9InstrSelectionSupport.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// Generate code to load the constant into a TmpInstruction (virtual reg) and
|
||||
// returns the virtual register.
|
||||
//
|
||||
static TmpInstruction*
|
||||
InsertCodeToLoadConstant(Function *F,
|
||||
Value* opValue,
|
||||
Instruction* vmInstr,
|
||||
std::vector<MachineInstr*>& loadConstVec,
|
||||
TargetMachine& target)
|
||||
{
|
||||
// Create a tmp virtual register to hold the constant.
|
||||
MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
|
||||
TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
|
||||
|
||||
CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi);
|
||||
|
||||
// Record the mapping from the tmp VM instruction to machine instruction.
|
||||
// Do this for all machine instructions that were not mapped to any
|
||||
// other temp values created by
|
||||
// tmpReg->addMachineInstruction(loadConstVec.back());
|
||||
|
||||
return tmpReg;
|
||||
}
|
||||
|
||||
|
||||
MachineOperand::MachineOperandType
|
||||
ChooseRegOrImmed(int64_t intValue,
|
||||
bool isSigned,
|
||||
MachineOpCode opCode,
|
||||
const TargetMachine& target,
|
||||
bool canUseImmed,
|
||||
unsigned int& getMachineRegNum,
|
||||
int64_t& getImmedValue)
|
||||
{
|
||||
MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
|
||||
getMachineRegNum = 0;
|
||||
getImmedValue = 0;
|
||||
|
||||
if (canUseImmed &&
|
||||
target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) {
|
||||
opType = isSigned? MachineOperand::MO_SignExtendedImmed
|
||||
: MachineOperand::MO_UnextendedImmed;
|
||||
getImmedValue = intValue;
|
||||
} else if (intValue == 0 &&
|
||||
target.getRegInfo()->getZeroRegNum() != (unsigned)-1) {
|
||||
opType = MachineOperand::MO_MachineRegister;
|
||||
getMachineRegNum = target.getRegInfo()->getZeroRegNum();
|
||||
}
|
||||
|
||||
return opType;
|
||||
}
|
||||
|
||||
|
||||
MachineOperand::MachineOperandType
|
||||
ChooseRegOrImmed(Value* val,
|
||||
MachineOpCode opCode,
|
||||
const TargetMachine& target,
|
||||
bool canUseImmed,
|
||||
unsigned int& getMachineRegNum,
|
||||
int64_t& getImmedValue)
|
||||
{
|
||||
getMachineRegNum = 0;
|
||||
getImmedValue = 0;
|
||||
|
||||
// To use reg or immed, constant needs to be integer, bool, or a NULL pointer
|
||||
// TargetInstrInfo::ConvertConstantToIntType() does the right conversions:
|
||||
bool isValidConstant;
|
||||
uint64_t valueToUse =
|
||||
ConvertConstantToIntType(target, val, val->getType(), isValidConstant);
|
||||
if (! isValidConstant)
|
||||
return MachineOperand::MO_VirtualRegister;
|
||||
|
||||
// Now check if the constant value fits in the IMMED field.
|
||||
//
|
||||
return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
|
||||
opCode, target, canUseImmed,
|
||||
getMachineRegNum, getImmedValue);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function: FixConstantOperandsForInstr
|
||||
//
|
||||
// Purpose:
|
||||
// Special handling for constant operands of a machine instruction
|
||||
// -- if the constant is 0, use the hardwired 0 register, if any;
|
||||
// -- if the constant fits in the IMMEDIATE field, use that field;
|
||||
// -- else create instructions to put the constant into a register, either
|
||||
// directly or by loading explicitly from the constant pool.
|
||||
//
|
||||
// In the first 2 cases, the operand of `minstr' is modified in place.
|
||||
// Returns a vector of machine instructions generated for operands that
|
||||
// fall under case 3; these must be inserted before `minstr'.
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
std::vector<MachineInstr*>
|
||||
FixConstantOperandsForInstr(Instruction* vmInstr,
|
||||
MachineInstr* minstr,
|
||||
TargetMachine& target)
|
||||
{
|
||||
std::vector<MachineInstr*> MVec;
|
||||
|
||||
MachineOpCode opCode = minstr->getOpcode();
|
||||
const TargetInstrInfo& instrInfo = *target.getInstrInfo();
|
||||
int resultPos = instrInfo.getResultPos(opCode);
|
||||
int immedPos = instrInfo.getImmedConstantPos(opCode);
|
||||
|
||||
Function *F = vmInstr->getParent()->getParent();
|
||||
|
||||
for (unsigned op=0; op < minstr->getNumOperands(); op++)
|
||||
{
|
||||
const MachineOperand& mop = minstr->getOperand(op);
|
||||
|
||||
// Skip the result position, preallocated machine registers, or operands
|
||||
// that cannot be constants (CC regs or PC-relative displacements)
|
||||
if (resultPos == (int)op ||
|
||||
mop.getType() == MachineOperand::MO_MachineRegister ||
|
||||
mop.getType() == MachineOperand::MO_CCRegister ||
|
||||
mop.getType() == MachineOperand::MO_PCRelativeDisp)
|
||||
continue;
|
||||
|
||||
bool constantThatMustBeLoaded = false;
|
||||
unsigned int machineRegNum = 0;
|
||||
int64_t immedValue = 0;
|
||||
Value* opValue = NULL;
|
||||
MachineOperand::MachineOperandType opType =
|
||||
MachineOperand::MO_VirtualRegister;
|
||||
|
||||
// Operand may be a virtual register or a compile-time constant
|
||||
if (mop.getType() == MachineOperand::MO_VirtualRegister) {
|
||||
assert(mop.getVRegValue() != NULL);
|
||||
opValue = mop.getVRegValue();
|
||||
if (Constant *opConst = dyn_cast<Constant>(opValue))
|
||||
if (!isa<GlobalValue>(opConst)) {
|
||||
opType = ChooseRegOrImmed(opConst, opCode, target,
|
||||
(immedPos == (int)op), machineRegNum,
|
||||
immedValue);
|
||||
if (opType == MachineOperand::MO_VirtualRegister)
|
||||
constantThatMustBeLoaded = true;
|
||||
}
|
||||
} else {
|
||||
//
|
||||
// If the operand is from the constant pool, don't try to change it.
|
||||
//
|
||||
if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
|
||||
continue;
|
||||
}
|
||||
assert(mop.isImmediate());
|
||||
bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
|
||||
|
||||
// Bit-selection flags indicate an instruction that is extracting
|
||||
// bits from its operand so ignore this even if it is a big constant.
|
||||
if (mop.isHiBits32() || mop.isLoBits32() ||
|
||||
mop.isHiBits64() || mop.isLoBits64())
|
||||
continue;
|
||||
|
||||
opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
|
||||
opCode, target, (immedPos == (int)op),
|
||||
machineRegNum, immedValue);
|
||||
|
||||
if (opType == MachineOperand::MO_SignExtendedImmed ||
|
||||
opType == MachineOperand::MO_UnextendedImmed) {
|
||||
// The optype is an immediate value
|
||||
// This means we need to change the opcode, e.g. ADDr -> ADDi
|
||||
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
|
||||
minstr->setOpcode(newOpcode);
|
||||
}
|
||||
|
||||
if (opType == mop.getType())
|
||||
continue; // no change: this is the most common case
|
||||
|
||||
if (opType == MachineOperand::MO_VirtualRegister) {
|
||||
constantThatMustBeLoaded = true;
|
||||
opValue = isSigned
|
||||
? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
|
||||
: (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
|
||||
}
|
||||
}
|
||||
|
||||
if (opType == MachineOperand::MO_MachineRegister)
|
||||
minstr->SetMachineOperandReg(op, machineRegNum);
|
||||
else if (opType == MachineOperand::MO_SignExtendedImmed ||
|
||||
opType == MachineOperand::MO_UnextendedImmed) {
|
||||
minstr->SetMachineOperandConst(op, opType, immedValue);
|
||||
// The optype is or has become an immediate
|
||||
// This means we need to change the opcode, e.g. ADDr -> ADDi
|
||||
unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
|
||||
minstr->setOpcode(newOpcode);
|
||||
} else if (constantThatMustBeLoaded ||
|
||||
(opValue && isa<GlobalValue>(opValue)))
|
||||
{ // opValue is a constant that must be explicitly loaded into a reg
|
||||
assert(opValue);
|
||||
TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
|
||||
MVec, target);
|
||||
minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
|
||||
tmpReg);
|
||||
}
|
||||
}
|
||||
|
||||
// Also, check for implicit operands used by the machine instruction
|
||||
// (no need to check those defined since they cannot be constants).
|
||||
// These include:
|
||||
// -- arguments to a Call
|
||||
// -- return value of a Return
|
||||
// Any such operand that is a constant value needs to be fixed also.
|
||||
// The current instructions with implicit refs (viz., Call and Return)
|
||||
// have no immediate fields, so the constant always needs to be loaded
|
||||
// into a register.
|
||||
//
|
||||
bool isCall = instrInfo.isCall(opCode);
|
||||
unsigned lastCallArgNum = 0; // unused if not a call
|
||||
CallArgsDescriptor* argDesc = NULL; // unused if not a call
|
||||
if (isCall)
|
||||
argDesc = CallArgsDescriptor::get(minstr);
|
||||
|
||||
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
|
||||
if (isa<Constant>(minstr->getImplicitRef(i)))
|
||||
{
|
||||
Value* oldVal = minstr->getImplicitRef(i);
|
||||
TmpInstruction* tmpReg =
|
||||
InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
|
||||
minstr->setImplicitRef(i, tmpReg);
|
||||
|
||||
if (isCall) {
|
||||
// find and replace the argument in the CallArgsDescriptor
|
||||
unsigned i=lastCallArgNum;
|
||||
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
|
||||
++i;
|
||||
assert(i < argDesc->getNumArgs() &&
|
||||
"Constant operands to a call *must* be in the arg list");
|
||||
lastCallArgNum = i;
|
||||
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
|
||||
}
|
||||
}
|
||||
|
||||
return MVec;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,14 +0,0 @@
|
||||
##===- Target/Sparc/InstrSelection/Makefile ----------------*- Makefile -*-===##
|
||||
#
|
||||
# The LLVM Compiler Infrastructure
|
||||
#
|
||||
# This file was developed by the LLVM research group and is distributed under
|
||||
# the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
|
||||
LEVEL = ../../../..
|
||||
DIRS =
|
||||
LIBRARYNAME = sparcv9select
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
@ -8,7 +8,7 @@
|
||||
##===----------------------------------------------------------------------===##
|
||||
LEVEL = ../../..
|
||||
LIBRARYNAME = sparcv9
|
||||
DIRS = InstrSelection RegAlloc LiveVar
|
||||
DIRS = RegAlloc LiveVar
|
||||
|
||||
ExtraSource = SparcV9.burm.cpp
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
56
lib/Target/SparcV9/SparcV9BurgISel.h
Normal file
56
lib/Target/SparcV9/SparcV9BurgISel.h
Normal file
@ -0,0 +1,56 @@
|
||||
//===-- SparcV9BurgISel.h ---------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Global functions exposed by the BURG-based instruction selector
|
||||
// for the SparcV9 target.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef SPARCV9BURGISEL_H
|
||||
#define SPARCV9BURGISEL_H
|
||||
|
||||
//#include "llvm/DerivedTypes.h"
|
||||
//#include "llvm/Instruction.h"
|
||||
//#include "SparcV9Internals.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Constant;
|
||||
class Instruction;
|
||||
class TargetMachine;
|
||||
class Function;
|
||||
class Value;
|
||||
class MachineInstr;
|
||||
class MachineCodeForInstruction;
|
||||
class FunctionPass;
|
||||
|
||||
/// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
|
||||
/// immediate field of the machine instructions (probably) generated for this
|
||||
/// instruction.
|
||||
///
|
||||
bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
|
||||
|
||||
/// CreateCodeToLoadConst - Create an instruction sequence to put the
|
||||
/// constant `val' into the virtual register `dest'. `val' may be a Constant
|
||||
/// or a GlobalValue, viz., the constant address of a global variable or
|
||||
/// function. The generated instructions are returned in `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
|
||||
Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
|
||||
MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
|
||||
/// BURG-based instruction selection pass.
|
||||
///
|
||||
FunctionPass *createSparcV9BurgInstSelector(TargetMachine &TM);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -1,789 +0,0 @@
|
||||
//===-- SparcV9InstrInfo.cpp - SparcV9 Instr. Selection Support Methods ---===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains various methods of the class SparcV9InstrInfo, many of
|
||||
// which appear to build canned sequences of MachineInstrs, and are
|
||||
// used in instruction selection.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/CodeGen/InstrSelection.h"
|
||||
#include "llvm/CodeGen/MachineConstantPool.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
||||
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "SparcV9Internals.h"
|
||||
#include "SparcV9InstrSelectionSupport.h"
|
||||
#include "SparcV9InstrInfo.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
|
||||
static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function ConvertConstantToIntType
|
||||
//
|
||||
// Function to get the value of an integral constant in the form
|
||||
// that must be put into the machine register. The specified constant is
|
||||
// interpreted as (i.e., converted if necessary to) the specified destination
|
||||
// type. The result is always returned as an uint64_t, since the representation
|
||||
// of int64_t and uint64_t are identical. The argument can be any known const.
|
||||
//
|
||||
// isValidConstant is set to true if a valid constant was found.
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
uint64_t
|
||||
ConvertConstantToIntType(const TargetMachine &target,
|
||||
const Value *V,
|
||||
const Type *destType,
|
||||
bool &isValidConstant)
|
||||
{
|
||||
isValidConstant = false;
|
||||
uint64_t C = 0;
|
||||
|
||||
if (! destType->isIntegral() && ! isa<PointerType>(destType))
|
||||
return C;
|
||||
|
||||
if (! isa<Constant>(V) || isa<GlobalValue>(V))
|
||||
return C;
|
||||
|
||||
// GlobalValue: no conversions needed: get value and return it
|
||||
if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
|
||||
isValidConstant = true; // may be overwritten by recursive call
|
||||
return ConvertConstantToIntType(target, GV, destType, isValidConstant);
|
||||
}
|
||||
|
||||
// ConstantBool: no conversions needed: get value and return it
|
||||
if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
|
||||
isValidConstant = true;
|
||||
return (uint64_t) CB->getValue();
|
||||
}
|
||||
|
||||
// ConstantPointerNull: it's really just a big, shiny version of zero.
|
||||
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(V)) {
|
||||
isValidConstant = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// For other types of constants, some conversion may be needed.
|
||||
// First, extract the constant operand according to its own type
|
||||
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
||||
switch(CE->getOpcode()) {
|
||||
case Instruction::Cast: // recursively get the value as cast
|
||||
C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
|
||||
isValidConstant);
|
||||
break;
|
||||
default: // not simplifying other ConstantExprs
|
||||
break;
|
||||
}
|
||||
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
isValidConstant = true;
|
||||
C = CI->getRawValue();
|
||||
}
|
||||
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
||||
isValidConstant = true;
|
||||
double fC = CFP->getValue();
|
||||
C = (destType->isSigned()? (uint64_t) (int64_t) fC
|
||||
: (uint64_t) fC);
|
||||
}
|
||||
|
||||
// Now if a valid value was found, convert it to destType.
|
||||
if (isValidConstant) {
|
||||
unsigned opSize = target.getTargetData().getTypeSize(V->getType());
|
||||
unsigned destSize = target.getTargetData().getTypeSize(destType);
|
||||
uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
|
||||
assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
|
||||
|
||||
if (destType->isSigned()) {
|
||||
if (opSize > destSize) // operand is larger than dest:
|
||||
C = C & maskHi; // mask high bits
|
||||
|
||||
if (opSize > destSize ||
|
||||
(opSize == destSize && ! V->getType()->isSigned()))
|
||||
if (C & (1U << (8*destSize - 1)))
|
||||
C = C | ~maskHi; // sign-extend from destSize to 64 bits
|
||||
}
|
||||
else {
|
||||
if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
|
||||
// operand is larger than dest,
|
||||
// OR both are equal but smaller than the full register size
|
||||
// AND operand is signed, so it may have extra sign bits:
|
||||
// mask high bits
|
||||
C = C & maskHi;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return C;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateSETUWConst
|
||||
//
|
||||
// Set a 32-bit unsigned constant in the register `dest', using
|
||||
// SETHI, OR in the worst case. This function correctly emulates
|
||||
// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false).
|
||||
//
|
||||
// The isSigned=true case is used to implement SETSW without duplicating code.
|
||||
//
|
||||
// Optimize some common cases:
|
||||
// (1) Small value that fits in simm13 field of OR: don't need SETHI.
|
||||
// (2) isSigned = true and C is a small negative signed value, i.e.,
|
||||
// high bits are 1, and the remaining bits fit in simm13(OR).
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateSETUWConst(const TargetMachine& target, uint32_t C,
|
||||
Instruction* dest, std::vector<MachineInstr*>& mvec,
|
||||
bool isSigned = false)
|
||||
{
|
||||
MachineInstr *miSETHI = NULL, *miOR = NULL;
|
||||
|
||||
// In order to get efficient code, we should not generate the SETHI if
|
||||
// all high bits are 1 (i.e., this is a small signed value that fits in
|
||||
// the simm13 field of OR). So we check for and handle that case specially.
|
||||
// NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
|
||||
// In fact, sC == -sC, so we have to check for this explicitly.
|
||||
int32_t sC = (int32_t) C;
|
||||
bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
|
||||
|
||||
// Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
|
||||
if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
|
||||
miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
|
||||
miSETHI->getOperand(0).markHi32();
|
||||
mvec.push_back(miSETHI);
|
||||
}
|
||||
|
||||
// Set the low 10 or 12 bits in dest. This is necessary if no SETHI
|
||||
// was generated, or if the low 10 bits are non-zero.
|
||||
if (miSETHI==NULL || C & MAXLO) {
|
||||
if (miSETHI) {
|
||||
// unsigned value with high-order bits set using SETHI
|
||||
miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
|
||||
miOR->getOperand(1).markLo32();
|
||||
} else {
|
||||
// unsigned or small signed value that fits in simm13 field of OR
|
||||
assert(smallNegValue || (C & ~MAXSIMM) == 0);
|
||||
miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum())
|
||||
.addSImm(sC).addRegDef(dest);
|
||||
}
|
||||
mvec.push_back(miOR);
|
||||
}
|
||||
|
||||
assert((miSETHI || miOR) && "Oops, no code was generated!");
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateSETSWConst
|
||||
//
|
||||
// Set a 32-bit signed constant in the register `dest', with sign-extension
|
||||
// to 64 bits. This uses SETHI, OR, SRA in the worst case.
|
||||
// This function correctly emulates the SETSW pseudo-op for SPARC v9.
|
||||
//
|
||||
// Optimize the same cases as SETUWConst, plus:
|
||||
// (1) SRA is not needed for positive or small negative values.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateSETSWConst(const TargetMachine& target, int32_t C,
|
||||
Instruction* dest, std::vector<MachineInstr*>& mvec)
|
||||
{
|
||||
// Set the low 32 bits of dest
|
||||
CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
|
||||
|
||||
// Sign-extend to the high 32 bits if needed.
|
||||
// NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
|
||||
if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
|
||||
mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateSETXConst
|
||||
//
|
||||
// Set a 64-bit signed or unsigned constant in the register `dest'.
|
||||
// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between.
|
||||
// This function correctly emulates the SETX pseudo-op for SPARC v9.
|
||||
//
|
||||
// Optimize the same cases as SETUWConst for each 32 bit word.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateSETXConst(const TargetMachine& target, uint64_t C,
|
||||
Instruction* tmpReg, Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec)
|
||||
{
|
||||
assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
|
||||
|
||||
MachineInstr* MI;
|
||||
|
||||
// Code to set the upper 32 bits of the value in register `tmpReg'
|
||||
CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
|
||||
|
||||
// Shift tmpReg left by 32 bits
|
||||
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
|
||||
.addRegDef(tmpReg));
|
||||
|
||||
// Code to set the low 32 bits of the value in register `dest'
|
||||
CreateSETUWConst(target, C, dest, mvec);
|
||||
|
||||
// dest = OR(tmpReg, dest)
|
||||
mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateSETUWLabel
|
||||
//
|
||||
// Set a 32-bit constant (given by a symbolic label) in the register `dest'.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateSETUWLabel(const TargetMachine& target, Value* val,
|
||||
Instruction* dest, std::vector<MachineInstr*>& mvec)
|
||||
{
|
||||
MachineInstr* MI;
|
||||
|
||||
// Set the high 22 bits in dest
|
||||
MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
|
||||
MI->getOperand(0).markHi32();
|
||||
mvec.push_back(MI);
|
||||
|
||||
// Set the low 10 bits in dest
|
||||
MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
|
||||
MI->getOperand(1).markLo32();
|
||||
mvec.push_back(MI);
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateSETXLabel
|
||||
//
|
||||
// Set a 64-bit constant (given by a symbolic label) in the register `dest'.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateSETXLabel(const TargetMachine& target,
|
||||
Value* val, Instruction* tmpReg, Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec)
|
||||
{
|
||||
assert(isa<Constant>(val) &&
|
||||
"I only know about constant values and global addresses");
|
||||
|
||||
MachineInstr* MI;
|
||||
|
||||
MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
|
||||
MI->getOperand(0).markHi64();
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
|
||||
MI->getOperand(1).markLo64();
|
||||
mvec.push_back(MI);
|
||||
|
||||
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
|
||||
.addRegDef(tmpReg));
|
||||
MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
|
||||
MI->getOperand(0).markHi32();
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
|
||||
MI->getOperand(1).markLo32();
|
||||
mvec.push_back(MI);
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateUIntSetInstruction
|
||||
//
|
||||
// Create code to Set an unsigned constant in the register `dest'.
|
||||
// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed.
|
||||
// CreateSETSWConst is an optimization for the case that the unsigned value
|
||||
// has all ones in the 33 high bits (so that sign-extension sets them all).
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateUIntSetInstruction(const TargetMachine& target,
|
||||
uint64_t C, Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
static const uint64_t lo32 = (uint32_t) ~0;
|
||||
if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
|
||||
CreateSETUWConst(target, (uint32_t) C, dest, mvec);
|
||||
else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
|
||||
// All high 33 (not 32) bits are 1s: sign-extension will take care
|
||||
// of high 32 bits, so use the sequence for signed int
|
||||
CreateSETSWConst(target, (int32_t) C, dest, mvec);
|
||||
} else if (C > lo32) {
|
||||
// C does not fit in 32 bits
|
||||
TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
|
||||
CreateSETXConst(target, C, tmpReg, dest, mvec);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Function: CreateIntSetInstruction
|
||||
//
|
||||
// Create code to Set a signed constant in the register `dest'.
|
||||
// Really the same as CreateUIntSetInstruction.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
static inline void
|
||||
CreateIntSetInstruction(const TargetMachine& target,
|
||||
int64_t C, Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Create a table of LLVM opcode -> max. immediate constant likely to
|
||||
// be usable for that operation.
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Entry == 0 ==> no immediate constant field exists at all.
|
||||
// Entry > 0 ==> abs(immediate constant) <= Entry
|
||||
//
|
||||
std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd);
|
||||
|
||||
static int
|
||||
MaxConstantForInstr(unsigned llvmOpCode)
|
||||
{
|
||||
int modelOpCode = -1;
|
||||
|
||||
if (llvmOpCode >= Instruction::BinaryOpsBegin &&
|
||||
llvmOpCode < Instruction::BinaryOpsEnd)
|
||||
modelOpCode = V9::ADDi;
|
||||
else
|
||||
switch(llvmOpCode) {
|
||||
case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
|
||||
|
||||
case Instruction::Malloc:
|
||||
case Instruction::Alloca:
|
||||
case Instruction::GetElementPtr:
|
||||
case Instruction::PHI:
|
||||
case Instruction::Cast:
|
||||
case Instruction::Call: modelOpCode = V9::ADDi; break;
|
||||
|
||||
case Instruction::Shl:
|
||||
case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
|
||||
|
||||
default: break;
|
||||
};
|
||||
|
||||
return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst;
|
||||
}
|
||||
|
||||
static void
|
||||
InitializeMaxConstantsTable()
|
||||
{
|
||||
unsigned op;
|
||||
assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd &&
|
||||
"assignments below will be illegal!");
|
||||
for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
|
||||
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
||||
for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
|
||||
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
||||
for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
|
||||
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
||||
for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
|
||||
MaxConstantsTable[op] = MaxConstantForInstr(op);
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// class SparcV9InstrInfo
|
||||
//
|
||||
// Purpose:
|
||||
// Information about individual instructions.
|
||||
// Most information is stored in the SparcV9MachineInstrDesc array above.
|
||||
// Other information is computed on demand, and most such functions
|
||||
// default to member functions in base class TargetInstrInfo.
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
SparcV9InstrInfo::SparcV9InstrInfo()
|
||||
: TargetInstrInfo(SparcV9MachineInstrDesc, V9::NUM_TOTAL_OPCODES) {
|
||||
InitializeMaxConstantsTable();
|
||||
}
|
||||
|
||||
bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) {
|
||||
if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
|
||||
return true;
|
||||
|
||||
if (isa<ConstantPointerNull>(CV)) // can always use %g0
|
||||
return false;
|
||||
|
||||
if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
|
||||
return false;
|
||||
|
||||
if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
|
||||
return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
|
||||
|
||||
if (isa<ConstantBool>(CV))
|
||||
return 1 > MaxConstantsTable[I->getOpcode()];
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// Create an instruction sequence to put the constant `val' into
|
||||
// the virtual register `dest'. `val' may be a Constant or a
|
||||
// GlobalValue, viz., the constant address of a global variable or function.
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Any stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateCodeToLoadConst(const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* val,
|
||||
Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
assert(isa<Constant>(val) &&
|
||||
"I only know about constant values and global addresses");
|
||||
|
||||
// Use a "set" instruction for known constants or symbolic constants (labels)
|
||||
// that can go in an integer reg.
|
||||
// We have to use a "load" instruction for all other constants,
|
||||
// in particular, floating point constants.
|
||||
//
|
||||
const Type* valType = val->getType();
|
||||
|
||||
if (isa<GlobalValue>(val)) {
|
||||
TmpInstruction* tmpReg =
|
||||
new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
|
||||
CreateSETXLabel(target, val, tmpReg, dest, mvec);
|
||||
return;
|
||||
}
|
||||
|
||||
bool isValid;
|
||||
uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
|
||||
if (isValid) {
|
||||
if (dest->getType()->isSigned())
|
||||
CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
|
||||
else
|
||||
CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
|
||||
|
||||
} else {
|
||||
// Make an instruction sequence to load the constant, viz:
|
||||
// SETX <addr-of-constant>, tmpReg, addrReg
|
||||
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
|
||||
|
||||
// First, create a tmp register to be used by the SETX sequence.
|
||||
TmpInstruction* tmpReg =
|
||||
new TmpInstruction(mcfi, PointerType::get(val->getType()));
|
||||
|
||||
// Create another TmpInstruction for the address register
|
||||
TmpInstruction* addrReg =
|
||||
new TmpInstruction(mcfi, PointerType::get(val->getType()));
|
||||
|
||||
// Get the constant pool index for this constant
|
||||
MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
|
||||
Constant *C = cast<Constant>(val);
|
||||
unsigned CPI = CP->getConstantPoolIndex(C);
|
||||
|
||||
// Put the address of the constant into a register
|
||||
MachineInstr* MI;
|
||||
|
||||
MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
|
||||
MI->getOperand(0).markHi64();
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
|
||||
.addRegDef(tmpReg);
|
||||
MI->getOperand(1).markLo64();
|
||||
mvec.push_back(MI);
|
||||
|
||||
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
|
||||
.addRegDef(tmpReg));
|
||||
MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
|
||||
MI->getOperand(0).markHi32();
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
|
||||
mvec.push_back(MI);
|
||||
|
||||
MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
|
||||
.addRegDef(addrReg);
|
||||
MI->getOperand(1).markLo32();
|
||||
mvec.push_back(MI);
|
||||
|
||||
// Now load the constant from out ConstantPool label
|
||||
unsigned Opcode = ChooseLoadInstruction(val->getType());
|
||||
Opcode = convertOpcodeFromRegToImm(Opcode);
|
||||
mvec.push_back(BuildMI(Opcode, 3)
|
||||
.addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
|
||||
}
|
||||
}
|
||||
|
||||
// Create an instruction sequence to copy an integer register `val'
|
||||
// to a floating point register `dest' by copying to memory and back.
|
||||
// val must be an integral type. dest must be a Float or Double.
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Any stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateCodeToCopyIntToFloat(const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* val,
|
||||
Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
|
||||
&& "Source type must be integral (integer or bool) or pointer");
|
||||
assert(dest->getType()->isFloatingPoint()
|
||||
&& "Dest type must be float/double");
|
||||
|
||||
// Get a stack slot to use for the copy
|
||||
int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
|
||||
|
||||
// Get the size of the source value being copied.
|
||||
size_t srcSize = target.getTargetData().getTypeSize(val->getType());
|
||||
|
||||
// Store instruction stores `val' to [%fp+offset].
|
||||
// The store and load opCodes are based on the size of the source value.
|
||||
// If the value is smaller than 32 bits, we must sign- or zero-extend it
|
||||
// to 32 bits since the load-float will load 32 bits.
|
||||
// Note that the store instruction is the same for signed and unsigned ints.
|
||||
const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
|
||||
Value* storeVal = val;
|
||||
if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
|
||||
// sign- or zero-extend respectively
|
||||
storeVal = new TmpInstruction(mcfi, storeType, val);
|
||||
if (val->getType()->isSigned())
|
||||
CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
|
||||
mvec, mcfi);
|
||||
else
|
||||
CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
|
||||
mvec, mcfi);
|
||||
}
|
||||
|
||||
unsigned FPReg = target.getRegInfo()->getFramePointer();
|
||||
unsigned StoreOpcode = ChooseStoreInstruction(storeType);
|
||||
StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
|
||||
mvec.push_back(BuildMI(StoreOpcode, 3)
|
||||
.addReg(storeVal).addMReg(FPReg).addSImm(offset));
|
||||
|
||||
// Load instruction loads [%fp+offset] to `dest'.
|
||||
// The type of the load opCode is the floating point type that matches the
|
||||
// stored type in size:
|
||||
// On SparcV9: float for int or smaller, double for long.
|
||||
//
|
||||
const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
|
||||
unsigned LoadOpcode = ChooseLoadInstruction(loadType);
|
||||
LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
|
||||
mvec.push_back(BuildMI(LoadOpcode, 3)
|
||||
.addMReg(FPReg).addSImm(offset).addRegDef(dest));
|
||||
}
|
||||
|
||||
// Similarly, create an instruction sequence to copy an FP register
|
||||
// `val' to an integer register `dest' by copying to memory and back.
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Temporary stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateCodeToCopyFloatToInt(const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* val,
|
||||
Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
const Type* opTy = val->getType();
|
||||
const Type* destTy = dest->getType();
|
||||
|
||||
assert(opTy->isFloatingPoint() && "Source type must be float/double");
|
||||
assert((destTy->isIntegral() || isa<PointerType>(destTy))
|
||||
&& "Dest type must be integer, bool or pointer");
|
||||
|
||||
// FIXME: For now, we allocate permanent space because the stack frame
|
||||
// manager does not allow locals to be allocated (e.g., for alloca) after
|
||||
// a temp is allocated!
|
||||
//
|
||||
int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
|
||||
|
||||
unsigned FPReg = target.getRegInfo()->getFramePointer();
|
||||
|
||||
// Store instruction stores `val' to [%fp+offset].
|
||||
// The store opCode is based only the source value being copied.
|
||||
//
|
||||
unsigned StoreOpcode = ChooseStoreInstruction(opTy);
|
||||
StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
|
||||
mvec.push_back(BuildMI(StoreOpcode, 3)
|
||||
.addReg(val).addMReg(FPReg).addSImm(offset));
|
||||
|
||||
// Load instruction loads [%fp+offset] to `dest'.
|
||||
// The type of the load opCode is the integer type that matches the
|
||||
// source type in size:
|
||||
// On SparcV9: int for float, long for double.
|
||||
// Note that we *must* use signed loads even for unsigned dest types, to
|
||||
// ensure correct sign-extension for UByte, UShort or UInt:
|
||||
//
|
||||
const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
|
||||
unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
|
||||
LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
|
||||
mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
|
||||
.addSImm(offset).addRegDef(dest));
|
||||
}
|
||||
|
||||
|
||||
// Create instruction(s) to copy src to dest, for arbitrary types
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Any stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateCopyInstructionsByType(const TargetMachine& target,
|
||||
Function *F,
|
||||
Value* src,
|
||||
Instruction* dest,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
bool loadConstantToReg = false;
|
||||
|
||||
const Type* resultType = dest->getType();
|
||||
|
||||
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
|
||||
assert (opCode != V9::INVALID_OPCODE
|
||||
&& "Unsupported result type in CreateCopyInstructionsByType()");
|
||||
|
||||
// if `src' is a constant that doesn't fit in the immed field or if it is
|
||||
// a global variable (i.e., a constant address), generate a load
|
||||
// instruction instead of an add
|
||||
//
|
||||
if (isa<GlobalValue>(src))
|
||||
loadConstantToReg = true;
|
||||
else if (isa<Constant>(src)) {
|
||||
unsigned int machineRegNum;
|
||||
int64_t immedValue;
|
||||
MachineOperand::MachineOperandType opType =
|
||||
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
|
||||
machineRegNum, immedValue);
|
||||
|
||||
if (opType == MachineOperand::MO_VirtualRegister)
|
||||
loadConstantToReg = true;
|
||||
}
|
||||
|
||||
if (loadConstantToReg) {
|
||||
// `src' is constant and cannot fit in immed field for the ADD
|
||||
// Insert instructions to "load" the constant into a register
|
||||
CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi);
|
||||
} else {
|
||||
// Create a reg-to-reg copy instruction for the given type:
|
||||
// -- For FP values, create a FMOVS or FMOVD instruction
|
||||
// -- For non-FP values, create an add-with-0 instruction (opCode as above)
|
||||
// Make `src' the second operand, in case it is a small constant!
|
||||
//
|
||||
MachineInstr* MI;
|
||||
if (resultType->isFloatingPoint())
|
||||
MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
|
||||
.addReg(src).addRegDef(dest));
|
||||
else {
|
||||
const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
|
||||
MI = (BuildMI(opCode, 3)
|
||||
.addSImm((int64_t) 0).addReg(src).addRegDef(dest));
|
||||
}
|
||||
mvec.push_back(MI);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Helper function for sign-extension and zero-extension.
|
||||
// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL.
|
||||
inline void
|
||||
CreateBitExtensionInstructions(bool signExtend,
|
||||
const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* srcVal,
|
||||
Value* destVal,
|
||||
unsigned int numLowBits,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
MachineInstr* M;
|
||||
|
||||
assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
|
||||
|
||||
if (numLowBits < 32) {
|
||||
// SLL is needed since operand size is < 32 bits.
|
||||
TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
|
||||
srcVal, destVal, "make32");
|
||||
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
|
||||
.addZImm(32-numLowBits).addRegDef(tmpI));
|
||||
srcVal = tmpI;
|
||||
}
|
||||
|
||||
mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
|
||||
.addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
|
||||
}
|
||||
|
||||
|
||||
// Create instruction sequence to produce a sign-extended register value
|
||||
// from an arbitrary-sized integer value (sized in bits, not bytes).
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Any stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateSignExtensionInstructions(
|
||||
const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* srcVal,
|
||||
Value* destVal,
|
||||
unsigned int numLowBits,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
|
||||
destVal, numLowBits, mvec, mcfi);
|
||||
}
|
||||
|
||||
|
||||
// Create instruction sequence to produce a zero-extended register value
|
||||
// from an arbitrary-sized integer value (sized in bits, not bytes).
|
||||
// For SPARC v9, we sign-extend the given operand using SLL; SRL.
|
||||
// The generated instructions are returned in `mvec'.
|
||||
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
// Any stack space required is allocated via MachineFunction.
|
||||
//
|
||||
void
|
||||
CreateZeroExtensionInstructions(
|
||||
const TargetMachine& target,
|
||||
Function* F,
|
||||
Value* srcVal,
|
||||
Value* destVal,
|
||||
unsigned int numLowBits,
|
||||
std::vector<MachineInstr*>& mvec,
|
||||
MachineCodeForInstruction& mcfi)
|
||||
{
|
||||
CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
|
||||
destVal, numLowBits, mvec, mcfi);
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,321 +0,0 @@
|
||||
//===-- SparcV9InstrSelectionSupport.h --------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// More instruction selection support routines for the SparcV9 target.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef SPARCV9INSTRSELECTIONSUPPORT_H
|
||||
#define SPARCV9INSTRSELECTIONSUPPORT_H
|
||||
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "SparcV9Internals.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
// Choose load instruction opcode based on type of value
|
||||
inline MachineOpCode
|
||||
ChooseLoadInstruction(const Type *DestTy)
|
||||
{
|
||||
switch (DestTy->getTypeID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID: return V9::LDUBr;
|
||||
case Type::SByteTyID: return V9::LDSBr;
|
||||
case Type::UShortTyID: return V9::LDUHr;
|
||||
case Type::ShortTyID: return V9::LDSHr;
|
||||
case Type::UIntTyID: return V9::LDUWr;
|
||||
case Type::IntTyID: return V9::LDSWr;
|
||||
case Type::PointerTyID:
|
||||
case Type::ULongTyID:
|
||||
case Type::LongTyID: return V9::LDXr;
|
||||
case Type::FloatTyID: return V9::LDFr;
|
||||
case Type::DoubleTyID: return V9::LDDFr;
|
||||
default: assert(0 && "Invalid type for Load instruction");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Choose store instruction opcode based on type of value
|
||||
inline MachineOpCode
|
||||
ChooseStoreInstruction(const Type *DestTy)
|
||||
{
|
||||
switch (DestTy->getTypeID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID:
|
||||
case Type::SByteTyID: return V9::STBr;
|
||||
case Type::UShortTyID:
|
||||
case Type::ShortTyID: return V9::STHr;
|
||||
case Type::UIntTyID:
|
||||
case Type::IntTyID: return V9::STWr;
|
||||
case Type::PointerTyID:
|
||||
case Type::ULongTyID:
|
||||
case Type::LongTyID: return V9::STXr;
|
||||
case Type::FloatTyID: return V9::STFr;
|
||||
case Type::DoubleTyID: return V9::STDFr;
|
||||
default: assert(0 && "Invalid type for Store instruction");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
inline MachineOpCode
|
||||
ChooseAddInstructionByType(const Type* resultType)
|
||||
{
|
||||
MachineOpCode opCode = V9::INVALID_OPCODE;
|
||||
|
||||
if (resultType->isIntegral() ||
|
||||
isa<PointerType>(resultType) ||
|
||||
isa<FunctionType>(resultType) ||
|
||||
resultType == Type::LabelTy)
|
||||
{
|
||||
opCode = V9::ADDr;
|
||||
}
|
||||
else
|
||||
switch(resultType->getTypeID())
|
||||
{
|
||||
case Type::FloatTyID: opCode = V9::FADDS; break;
|
||||
case Type::DoubleTyID: opCode = V9::FADDD; break;
|
||||
default: assert(0 && "Invalid type for ADD instruction"); break;
|
||||
}
|
||||
|
||||
return opCode;
|
||||
}
|
||||
|
||||
|
||||
// Because the SparcV9 instruction selector likes to re-write operands to
|
||||
// instructions, making them change from a Value* (virtual register) to a
|
||||
// Constant* (making an immediate field), we need to change the opcode from a
|
||||
// register-based instruction to an immediate-based instruction, hence this
|
||||
// mapping.
|
||||
static unsigned
|
||||
convertOpcodeFromRegToImm(unsigned Opcode) {
|
||||
switch (Opcode) {
|
||||
/* arithmetic */
|
||||
case V9::ADDr: return V9::ADDi;
|
||||
case V9::ADDccr: return V9::ADDcci;
|
||||
case V9::ADDCr: return V9::ADDCi;
|
||||
case V9::ADDCccr: return V9::ADDCcci;
|
||||
case V9::SUBr: return V9::SUBi;
|
||||
case V9::SUBccr: return V9::SUBcci;
|
||||
case V9::SUBCr: return V9::SUBCi;
|
||||
case V9::SUBCccr: return V9::SUBCcci;
|
||||
case V9::MULXr: return V9::MULXi;
|
||||
case V9::SDIVXr: return V9::SDIVXi;
|
||||
case V9::UDIVXr: return V9::UDIVXi;
|
||||
|
||||
/* logical */
|
||||
case V9::ANDr: return V9::ANDi;
|
||||
case V9::ANDccr: return V9::ANDcci;
|
||||
case V9::ANDNr: return V9::ANDNi;
|
||||
case V9::ANDNccr: return V9::ANDNcci;
|
||||
case V9::ORr: return V9::ORi;
|
||||
case V9::ORccr: return V9::ORcci;
|
||||
case V9::ORNr: return V9::ORNi;
|
||||
case V9::ORNccr: return V9::ORNcci;
|
||||
case V9::XORr: return V9::XORi;
|
||||
case V9::XORccr: return V9::XORcci;
|
||||
case V9::XNORr: return V9::XNORi;
|
||||
case V9::XNORccr: return V9::XNORcci;
|
||||
|
||||
/* shift */
|
||||
case V9::SLLr5: return V9::SLLi5;
|
||||
case V9::SRLr5: return V9::SRLi5;
|
||||
case V9::SRAr5: return V9::SRAi5;
|
||||
case V9::SLLXr6: return V9::SLLXi6;
|
||||
case V9::SRLXr6: return V9::SRLXi6;
|
||||
case V9::SRAXr6: return V9::SRAXi6;
|
||||
|
||||
/* Conditional move on int comparison with zero */
|
||||
case V9::MOVRZr: return V9::MOVRZi;
|
||||
case V9::MOVRLEZr: return V9::MOVRLEZi;
|
||||
case V9::MOVRLZr: return V9::MOVRLZi;
|
||||
case V9::MOVRNZr: return V9::MOVRNZi;
|
||||
case V9::MOVRGZr: return V9::MOVRGZi;
|
||||
case V9::MOVRGEZr: return V9::MOVRGEZi;
|
||||
|
||||
|
||||
/* Conditional move on int condition code */
|
||||
case V9::MOVAr: return V9::MOVAi;
|
||||
case V9::MOVNr: return V9::MOVNi;
|
||||
case V9::MOVNEr: return V9::MOVNEi;
|
||||
case V9::MOVEr: return V9::MOVEi;
|
||||
case V9::MOVGr: return V9::MOVGi;
|
||||
case V9::MOVLEr: return V9::MOVLEi;
|
||||
case V9::MOVGEr: return V9::MOVGEi;
|
||||
case V9::MOVLr: return V9::MOVLi;
|
||||
case V9::MOVGUr: return V9::MOVGUi;
|
||||
case V9::MOVLEUr: return V9::MOVLEUi;
|
||||
case V9::MOVCCr: return V9::MOVCCi;
|
||||
case V9::MOVCSr: return V9::MOVCSi;
|
||||
case V9::MOVPOSr: return V9::MOVPOSi;
|
||||
case V9::MOVNEGr: return V9::MOVNEGi;
|
||||
case V9::MOVVCr: return V9::MOVVCi;
|
||||
case V9::MOVVSr: return V9::MOVVSi;
|
||||
|
||||
/* Conditional move of int reg on fp condition code */
|
||||
case V9::MOVFAr: return V9::MOVFAi;
|
||||
case V9::MOVFNr: return V9::MOVFNi;
|
||||
case V9::MOVFUr: return V9::MOVFUi;
|
||||
case V9::MOVFGr: return V9::MOVFGi;
|
||||
case V9::MOVFUGr: return V9::MOVFUGi;
|
||||
case V9::MOVFLr: return V9::MOVFLi;
|
||||
case V9::MOVFULr: return V9::MOVFULi;
|
||||
case V9::MOVFLGr: return V9::MOVFLGi;
|
||||
case V9::MOVFNEr: return V9::MOVFNEi;
|
||||
case V9::MOVFEr: return V9::MOVFEi;
|
||||
case V9::MOVFUEr: return V9::MOVFUEi;
|
||||
case V9::MOVFGEr: return V9::MOVFGEi;
|
||||
case V9::MOVFUGEr: return V9::MOVFUGEi;
|
||||
case V9::MOVFLEr: return V9::MOVFLEi;
|
||||
case V9::MOVFULEr: return V9::MOVFULEi;
|
||||
case V9::MOVFOr: return V9::MOVFOi;
|
||||
|
||||
/* load */
|
||||
case V9::LDSBr: return V9::LDSBi;
|
||||
case V9::LDSHr: return V9::LDSHi;
|
||||
case V9::LDSWr: return V9::LDSWi;
|
||||
case V9::LDUBr: return V9::LDUBi;
|
||||
case V9::LDUHr: return V9::LDUHi;
|
||||
case V9::LDUWr: return V9::LDUWi;
|
||||
case V9::LDXr: return V9::LDXi;
|
||||
case V9::LDFr: return V9::LDFi;
|
||||
case V9::LDDFr: return V9::LDDFi;
|
||||
case V9::LDQFr: return V9::LDQFi;
|
||||
case V9::LDFSRr: return V9::LDFSRi;
|
||||
case V9::LDXFSRr: return V9::LDXFSRi;
|
||||
|
||||
/* store */
|
||||
case V9::STBr: return V9::STBi;
|
||||
case V9::STHr: return V9::STHi;
|
||||
case V9::STWr: return V9::STWi;
|
||||
case V9::STXr: return V9::STXi;
|
||||
case V9::STFr: return V9::STFi;
|
||||
case V9::STDFr: return V9::STDFi;
|
||||
case V9::STFSRr: return V9::STFSRi;
|
||||
case V9::STXFSRr: return V9::STXFSRi;
|
||||
|
||||
/* jump & return */
|
||||
case V9::JMPLCALLr: return V9::JMPLCALLi;
|
||||
case V9::JMPLRETr: return V9::JMPLRETi;
|
||||
|
||||
/* save and restore */
|
||||
case V9::SAVEr: return V9::SAVEi;
|
||||
case V9::RESTOREr: return V9::RESTOREi;
|
||||
|
||||
default:
|
||||
// It's already in correct format
|
||||
// Or, it's just not handled yet, but an assert() would break LLC
|
||||
#if 0
|
||||
std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode
|
||||
<< "\n";
|
||||
#endif
|
||||
return Opcode;
|
||||
}
|
||||
}
|
||||
|
||||
MachineOperand::MachineOperandType
|
||||
ChooseRegOrImmed(Value* val, MachineOpCode opCode,
|
||||
const TargetMachine& targetMachine, bool canUseImmed,
|
||||
unsigned& getMachineRegNum, int64_t& getImmedValue);
|
||||
|
||||
/// ConvertConstantToIntType - Get the value of an integral constant in the
|
||||
/// form that must be put into the machine register. The specified constant is
|
||||
/// interpreted as (i.e., converted if necessary to) the specified destination
|
||||
/// type. The result is always returned as an uint64_t, since the
|
||||
/// representation of int64_t and uint64_t are identical. The argument can be
|
||||
/// any known const. isValidConstant is set to true if a valid constant was
|
||||
/// found.
|
||||
///
|
||||
uint64_t ConvertConstantToIntType (const TargetMachine &target,
|
||||
const Value *V, const Type *destType, bool &isValidConstant);
|
||||
|
||||
/// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
|
||||
/// immediate field of the machine instructions (probably) generated for this
|
||||
/// instruction.
|
||||
///
|
||||
bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
|
||||
|
||||
/// CreateCodeToLoadConst - Create an instruction sequence to put the
|
||||
/// constant `val' into the virtual register `dest'. `val' may be a Constant
|
||||
/// or a GlobalValue, viz., the constant address of a global variable or
|
||||
/// function. The generated instructions are returned in `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
|
||||
Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
|
||||
MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateSignExtensionInstructions - Create instruction sequence to produce a
|
||||
/// sign-extended register value from an arbitrary sized value (sized in bits,
|
||||
/// not bytes). The generated instructions are appended to `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateSignExtensionInstructions (const TargetMachine &target,
|
||||
Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
|
||||
std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateZeroExtensionInstructions - Create instruction sequence to produce a
|
||||
/// zero-extended register value from an arbitrary sized value (sized in bits,
|
||||
/// not bytes). The generated instructions are appended to `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateZeroExtensionInstructions (const TargetMachine &target,
|
||||
Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
|
||||
std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an
|
||||
/// integer value `val' to a floating point value `dest' by copying to memory
|
||||
/// and back. val must be an integral type. dest must be a Float or Double.
|
||||
/// The generated instructions are returned in `mvec'. Any temp. registers
|
||||
/// (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateCodeToCopyIntToFloat (const TargetMachine &target,
|
||||
Function *F, Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
|
||||
MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateCodeToCopyFloatToInt - Create an instruction sequence to copy an FP
|
||||
/// value `val' to an integer value `dest' by copying to memory and back. The
|
||||
/// generated instructions are returned in `mvec'. Any temp. registers
|
||||
/// (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateCodeToCopyFloatToInt (const TargetMachine &target, Function *F,
|
||||
Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
|
||||
MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest,
|
||||
/// for arbitrary types The generated instructions are returned in `mvec'. Any
|
||||
/// temp. registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateCopyInstructionsByType (const TargetMachine &target,
|
||||
Function *F, Value *src, Instruction *dest, std::vector<MachineInstr*> &mvec,
|
||||
MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateSignExtensionInstructions - Create instruction sequence to produce a
|
||||
/// sign-extended register value from an arbitrary sized value (sized in bits,
|
||||
/// not bytes). The generated instructions are appended to `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateSignExtensionInstructions (const TargetMachine &target,
|
||||
Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
|
||||
std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
|
||||
|
||||
/// CreateZeroExtensionInstructions - Create instruction sequence to produce a
|
||||
/// zero-extended register value from an arbitrary sized value (sized in bits,
|
||||
/// not bytes). The generated instructions are appended to `mvec'. Any temp.
|
||||
/// registers (TmpInstruction) created are recorded in mcfi.
|
||||
///
|
||||
void CreateZeroExtensionInstructions (const TargetMachine &target,
|
||||
Function *F, Value *srcVal, Value *destVal, unsigned int numLowBits,
|
||||
std::vector<MachineInstr*> &mvec, MachineCodeForInstruction &mcfi);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user