Reimplement MemoryBuffer::getFile with three enhancements:

1) stop using MappedFile.
2) if profitable use the sys::path::MapInFilePages api to
   read the file.
3) otherwise fallback to read.

When sys::path::MapInFilePages is implemented, this provides
several benefits:

#1: this avoids fragmenting memory for small files.
#2: this avoids extraneous stat calls when the file size is known.
#3: this only keeps the file descriptor open while reading the 
    file, not for the duration of the lifetime of the memory 
    buffer.  This fixes a serious clang FD 'leak' problem.

I believe that this will work on a win32 machine, but I don't have
one to test on.  I'd appreciate it if someone could check.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49031 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-04-01 06:05:21 +00:00
parent 799ed1053b
commit 11da4cf25c

View File

@ -12,13 +12,24 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/MappedFile.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/System/Path.h"
#include "llvm/System/Process.h"
#include "llvm/System/Program.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <cerrno>
#include <sys/types.h>
#include <sys/stat.h>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#include <sys/uio.h>
#include <sys/fcntl.h>
#else
#include <io.h>
#endif
using namespace llvm;
//===----------------------------------------------------------------------===//
@ -135,109 +146,79 @@ MemoryBuffer *MemoryBuffer::getFileOrSTDIN(const char *FilenameStart,
return MemoryBuffer::getMemBuffer(EmptyStr, EmptyStr, "<stdin>");
}
//===----------------------------------------------------------------------===//
// MemoryBufferMMapFile implementation.
//===----------------------------------------------------------------------===//
namespace {
class MemoryBufferMMapFile : public MemoryBuffer {
sys::MappedFile File;
public:
MemoryBufferMMapFile() {}
bool open(const sys::Path &Filename, std::string *ErrStr);
virtual const char *getBufferIdentifier() const {
return File.path().c_str();
}
~MemoryBufferMMapFile();
};
}
bool MemoryBufferMMapFile::open(const sys::Path &Filename,
std::string *ErrStr) {
// FIXME: This does an extra stat syscall to figure out the size, but we
// already know the size!
bool Failure = File.open(Filename, ErrStr);
if (Failure) return true;
if (!File.map(ErrStr))
return true;
size_t Size = File.size();
static unsigned PageSize = sys::Process::GetPageSize();
assert(((PageSize & (PageSize-1)) == 0) && PageSize &&
"Page size is not a power of 2!");
// If this file is not an exact multiple of the system page size (common
// case), then the OS has zero terminated the buffer for us.
const char *FileBase = static_cast<const char*>(File.getBase());
if ((Size & (PageSize-1)) != 0) {
init(FileBase, FileBase+Size);
} else {
// Otherwise, we allocate a new memory buffer and copy the data over
initCopyOf(FileBase, FileBase+Size);
// No need to keep the file mapped any longer.
File.unmap();
}
return false;
}
MemoryBufferMMapFile::~MemoryBufferMMapFile() {
if (File.isMapped())
File.unmap();
}
//===----------------------------------------------------------------------===//
// MemoryBuffer::getFile implementation.
//===----------------------------------------------------------------------===//
namespace {
/// MemoryBufferMMapFile - This represents a file that was mapped in with the
/// sys::Path::MapInFilePages method. When destroyed, it calls the
/// sys::Path::UnMapFilePages method.
class MemoryBufferMMapFile : public MemoryBuffer {
std::string Filename;
public:
MemoryBufferMMapFile(const char *filename, const char *Pages, uint64_t Size)
: Filename(filename) {
init(Pages, Pages+Size);
}
virtual const char *getBufferIdentifier() const {
return Filename.c_str();
}
~MemoryBufferMMapFile() {
sys::Path::UnMapFilePages(getBufferStart(), getBufferSize());
}
};
}
MemoryBuffer *MemoryBuffer::getFile(const char *FilenameStart, unsigned FnSize,
std::string *ErrStr, int64_t FileSize){
// FIXME: it would be nice if PathWithStatus didn't copy the filename into a
// temporary string. :(
sys::PathWithStatus P(FilenameStart, FnSize);
#if 1
MemoryBufferMMapFile *M = new MemoryBufferMMapFile();
if (!M->open(P, ErrStr))
return M;
delete M;
return 0;
#else
// FIXME: We need an efficient and portable method to open a file and then use
// 'read' to copy the bits out. The unix implementation is below. This is
// an important optimization for clients that want to open large numbers of
// small files (using mmap on everything can easily exhaust address space!).
std::string *ErrStr, int64_t FileSize) {
// Null terminate the filename.
SmallString<1000> Filename(FilenameStart, FilenameStart+FnSize);
Filename.push_back(0);
// If the user didn't specify a filesize, do a stat to find it.
if (FileSize == -1) {
const sys::FileStatus *FS = P.getFileStatus();
if (FS == 0) return 0; // Error stat'ing file.
FileSize = FS->fileSize;
}
// If the file is larger than some threshold, use mmap, otherwise use 'read'.
if (FileSize >= 4096*4) {
MemoryBufferMMapFile *M = new MemoryBufferMMapFile();
if (!M->open(P, ErrStr))
return M;
delete M;
return 0;
}
MemoryBuffer *SB = getNewUninitMemBuffer(FileSize, FilenameStart);
char *BufPtr = const_cast<char*>(SB->getBufferStart());
int FD = ::open(FilenameStart, O_RDONLY);
int OpenFlags = 0;
#ifdef O_BINARY
Flags |= O_BINARY; // Open input file in binary mode on win32.
#endif
int FD = ::open(&Filename[0], O_RDONLY|OpenFlags);
if (FD == -1) {
delete SB;
if (ErrStr) *ErrStr = "could not open file";
return 0;
}
// If we don't know the file size, use fstat to find out. fstat on an open
// file descriptor is cheaper than stat on a random path.
if (FileSize == -1) {
struct stat FileInfo;
// TODO: This should use fstat64 when available.
if (fstat(FD, &FileInfo) == -1) {
if (ErrStr) *ErrStr = "could not get file length";
::close(FD);
return 0;
}
FileSize = FileInfo.st_size;
}
// If the file is large, try to use mmap to read it in. We don't use mmap
// for small files, because this can severely fragment our address space. Also
// don't try to map files that are exactly a multiple of the system page size,
// as the file would not have the required null terminator.
if (FileSize >= 4096*4 &&
(FileSize & (sys::Process::GetPageSize()-1)) != 0) {
if (const char *Pages = sys::Path::MapInFilePages(FD, FileSize)) {
// Close the file descriptor, now that the whole file is in memory.
::close(FD);
return new MemoryBufferMMapFile(&Filename[0], Pages, FileSize);
}
}
OwningPtr<MemoryBuffer> SB;
SB.reset(MemoryBuffer::getNewUninitMemBuffer(FileSize, &Filename[0]));
char *BufPtr = const_cast<char*>(SB->getBufferStart());
unsigned BytesLeft = FileSize;
while (BytesLeft) {
ssize_t NumRead = ::read(FD, BufPtr, BytesLeft);
@ -249,17 +230,15 @@ MemoryBuffer *MemoryBuffer::getFile(const char *FilenameStart, unsigned FnSize,
} else {
// error reading.
close(FD);
delete SB;
if (ErrStr) *ErrStr = "error reading file data";
return 0;
}
}
close(FD);
return SB;
#endif
return SB.take();
}
//===----------------------------------------------------------------------===//
// MemoryBuffer::getSTDIN implementation.
//===----------------------------------------------------------------------===//