mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 00:32:55 +00:00
Revert following patches to fix llvmgcc bootstrap.
86289, 86278, 86270, 86267, 86266 & 86264 Chris, please take a look. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86321 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
0430152a11
commit
12d53dba36
@ -75,19 +75,14 @@ namespace {
|
||||
bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
|
||||
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
|
||||
BasicBlock *PredBB);
|
||||
|
||||
typedef SmallVectorImpl<std::pair<ConstantInt*,
|
||||
BasicBlock*> > PredValueInfo;
|
||||
|
||||
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
|
||||
PredValueInfo &Result);
|
||||
bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
|
||||
|
||||
|
||||
|
||||
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
|
||||
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
|
||||
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
|
||||
|
||||
bool ProcessJumpOnPHI(PHINode *PN);
|
||||
bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
|
||||
bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
|
||||
|
||||
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
|
||||
};
|
||||
@ -203,133 +198,28 @@ void JumpThreading::FindLoopHeaders(Function &F) {
|
||||
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
|
||||
}
|
||||
|
||||
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
|
||||
/// hand sides of the compare instruction, try to determine the result. If the
|
||||
/// result can not be determined, a null pointer is returned.
|
||||
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
|
||||
Value *LHS, Value *RHS) {
|
||||
if (Constant *CLHS = dyn_cast<Constant>(LHS))
|
||||
if (Constant *CRHS = dyn_cast<Constant>(RHS))
|
||||
return ConstantExpr::getCompare(pred, CLHS, CRHS);
|
||||
/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
|
||||
/// value for the PHI, factor them together so we get one block to thread for
|
||||
/// the whole group.
|
||||
/// This is important for things like "phi i1 [true, true, false, true, x]"
|
||||
/// where we only need to clone the block for the true blocks once.
|
||||
///
|
||||
BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
|
||||
SmallVector<BasicBlock*, 16> CommonPreds;
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
||||
if (PN->getIncomingValue(i) == Val)
|
||||
CommonPreds.push_back(PN->getIncomingBlock(i));
|
||||
|
||||
if (LHS == RHS)
|
||||
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
|
||||
if (ICmpInst::isTrueWhenEqual(pred))
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
else
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
}
|
||||
return 0;
|
||||
if (CommonPreds.size() == 1)
|
||||
return CommonPreds[0];
|
||||
|
||||
DEBUG(errs() << " Factoring out " << CommonPreds.size()
|
||||
<< " common predecessors.\n");
|
||||
return SplitBlockPredecessors(PN->getParent(),
|
||||
&CommonPreds[0], CommonPreds.size(),
|
||||
".thr_comm", this);
|
||||
}
|
||||
|
||||
|
||||
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
|
||||
/// if we can infer that the value is a known ConstantInt in any of our
|
||||
/// predecessors. If so, return the known the list of value and pred BB in the
|
||||
/// result vector. If a value is known to be undef, it is returned as null.
|
||||
///
|
||||
/// The BB basic block is known to start with a PHI node.
|
||||
///
|
||||
/// This returns true if there were any known values.
|
||||
///
|
||||
///
|
||||
/// TODO: Per PR2563, we could infer value range information about a predecessor
|
||||
/// based on its terminator.
|
||||
bool JumpThreading::
|
||||
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
|
||||
PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
|
||||
|
||||
// If V is a constantint, then it is known in all predecessors.
|
||||
if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
|
||||
ConstantInt *CI = dyn_cast<ConstantInt>(V);
|
||||
Result.resize(TheFirstPHI->getNumIncomingValues());
|
||||
for (unsigned i = 0, e = Result.size(); i != e; ++i)
|
||||
Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
|
||||
return true;
|
||||
}
|
||||
|
||||
// If V is a non-instruction value, or an instruction in a different block,
|
||||
// then it can't be derived from a PHI.
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (I == 0 || I->getParent() != BB)
|
||||
return false;
|
||||
|
||||
/// If I is a PHI node, then we know the incoming values for any constants.
|
||||
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *InVal = PN->getIncomingValue(i);
|
||||
if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
|
||||
ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
|
||||
Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
|
||||
}
|
||||
}
|
||||
return !Result.empty();
|
||||
}
|
||||
|
||||
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
|
||||
|
||||
// Handle some boolean conditions.
|
||||
if (I->getType()->getPrimitiveSizeInBits() == 1) {
|
||||
// X | true -> true
|
||||
// X & false -> false
|
||||
if (I->getOpcode() == Instruction::Or ||
|
||||
I->getOpcode() == Instruction::And) {
|
||||
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
|
||||
ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
|
||||
|
||||
if (LHSVals.empty() && RHSVals.empty())
|
||||
return false;
|
||||
|
||||
ConstantInt *InterestingVal;
|
||||
if (I->getOpcode() == Instruction::Or)
|
||||
InterestingVal = ConstantInt::getTrue(I->getContext());
|
||||
else
|
||||
InterestingVal = ConstantInt::getFalse(I->getContext());
|
||||
|
||||
// Scan for the sentinel.
|
||||
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
|
||||
if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
|
||||
Result.push_back(LHSVals[i]);
|
||||
for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
|
||||
if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
|
||||
Result.push_back(RHSVals[i]);
|
||||
return !Result.empty();
|
||||
}
|
||||
|
||||
// TODO: Should handle the NOT form of XOR.
|
||||
|
||||
}
|
||||
|
||||
// Handle compare with phi operand, where the PHI is defined in this block.
|
||||
if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
|
||||
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
|
||||
if (PN && PN->getParent() == BB) {
|
||||
// We can do this simplification if any comparisons fold to true or false.
|
||||
// See if any do.
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
BasicBlock *PredBB = PN->getIncomingBlock(i);
|
||||
Value *LHS = PN->getIncomingValue(i);
|
||||
Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
|
||||
|
||||
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
|
||||
if (Res == 0) continue;
|
||||
|
||||
if (isa<UndefValue>(Res))
|
||||
Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
|
||||
else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
|
||||
Result.push_back(std::make_pair(CI, PredBB));
|
||||
}
|
||||
|
||||
return !Result.empty();
|
||||
}
|
||||
|
||||
// TODO: We could also recurse to see if we can determine constants another
|
||||
// way.
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
|
||||
/// in an undefined jump, decide which block is best to revector to.
|
||||
@ -360,7 +250,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
|
||||
// successor, merge the blocks. This encourages recursive jump threading
|
||||
// because now the condition in this block can be threaded through
|
||||
// predecessors of our predecessor block.
|
||||
if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
|
||||
if (BasicBlock *SinglePred = BB->getSinglePredecessor())
|
||||
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
|
||||
SinglePred != BB) {
|
||||
// If SinglePred was a loop header, BB becomes one.
|
||||
@ -376,10 +266,10 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
|
||||
BB->moveBefore(&BB->getParent()->getEntryBlock());
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Look to see if the terminator is a branch of switch, if not we can't thread
|
||||
// it.
|
||||
|
||||
// See if this block ends with a branch or switch. If so, see if the
|
||||
// condition is a phi node. If so, and if an entry of the phi node is a
|
||||
// constant, we can thread the block.
|
||||
Value *Condition;
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
|
||||
// Can't thread an unconditional jump.
|
||||
@ -455,26 +345,44 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
|
||||
if (PN->getParent() == BB)
|
||||
return ProcessJumpOnPHI(PN);
|
||||
|
||||
// If this is a conditional branch whose condition is and/or of a phi, try to
|
||||
// simplify it.
|
||||
if ((CondInst->getOpcode() == Instruction::And ||
|
||||
CondInst->getOpcode() == Instruction::Or) &&
|
||||
isa<BranchInst>(BB->getTerminator()) &&
|
||||
ProcessBranchOnLogical(CondInst, BB,
|
||||
CondInst->getOpcode() == Instruction::And))
|
||||
return true;
|
||||
|
||||
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
|
||||
if (!isa<PHINode>(CondCmp->getOperand(0)) ||
|
||||
cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
|
||||
// If we have a comparison, loop over the predecessors to see if there is
|
||||
// a condition with a lexically identical value.
|
||||
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
|
||||
for (; PI != E; ++PI)
|
||||
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
|
||||
if (PBI->isConditional() && *PI != BB) {
|
||||
if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
|
||||
if (CI->getOperand(0) == CondCmp->getOperand(0) &&
|
||||
CI->getOperand(1) == CondCmp->getOperand(1) &&
|
||||
CI->getPredicate() == CondCmp->getPredicate()) {
|
||||
// TODO: Could handle things like (x != 4) --> (x == 17)
|
||||
if (ProcessBranchOnDuplicateCond(*PI, BB))
|
||||
return true;
|
||||
}
|
||||
if (isa<PHINode>(CondCmp->getOperand(0))) {
|
||||
// If we have "br (phi != 42)" and the phi node has any constant values
|
||||
// as operands, we can thread through this block.
|
||||
//
|
||||
// If we have "br (cmp phi, x)" and the phi node contains x such that the
|
||||
// comparison uniquely identifies the branch target, we can thread
|
||||
// through this block.
|
||||
|
||||
if (ProcessBranchOnCompare(CondCmp, BB))
|
||||
return true;
|
||||
}
|
||||
|
||||
// If we have a comparison, loop over the predecessors to see if there is
|
||||
// a condition with the same value.
|
||||
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
|
||||
for (; PI != E; ++PI)
|
||||
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
|
||||
if (PBI->isConditional() && *PI != BB) {
|
||||
if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
|
||||
if (CI->getOperand(0) == CondCmp->getOperand(0) &&
|
||||
CI->getOperand(1) == CondCmp->getOperand(1) &&
|
||||
CI->getPredicate() == CondCmp->getPredicate()) {
|
||||
// TODO: Could handle things like (x != 4) --> (x == 17)
|
||||
if (ProcessBranchOnDuplicateCond(*PI, BB))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check for some cases that are worth simplifying. Right now we want to look
|
||||
@ -493,19 +401,6 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
|
||||
if (SimplifyPartiallyRedundantLoad(LI))
|
||||
return true;
|
||||
|
||||
|
||||
// Handle a variety of cases where we are branching on something derived from
|
||||
// a PHI node in the current block. If we can prove that any predecessors
|
||||
// compute a predictable value based on a PHI node, thread those predecessors.
|
||||
//
|
||||
// We only bother doing this if the current block has a PHI node and if the
|
||||
// conditional instruction lives in the current block. If either condition
|
||||
// fail, this won't be a computable value anyway.
|
||||
if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
|
||||
if (ProcessThreadableEdges(CondInst, BB))
|
||||
return true;
|
||||
|
||||
|
||||
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
|
||||
// "(X == 4)" thread through this block.
|
||||
|
||||
@ -794,185 +689,6 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
|
||||
return true;
|
||||
}
|
||||
|
||||
/// FindMostPopularDest - The specified list contains multiple possible
|
||||
/// threadable destinations. Pick the one that occurs the most frequently in
|
||||
/// the list.
|
||||
static BasicBlock *
|
||||
FindMostPopularDest(BasicBlock *BB,
|
||||
const SmallVectorImpl<std::pair<BasicBlock*,
|
||||
BasicBlock*> > &PredToDestList) {
|
||||
assert(!PredToDestList.empty());
|
||||
|
||||
// Determine popularity. If there are multiple possible destinations, we
|
||||
// explicitly choose to ignore 'undef' destinations. We prefer to thread
|
||||
// blocks with known and real destinations to threading undef. We'll handle
|
||||
// them later if interesting.
|
||||
DenseMap<BasicBlock*, unsigned> DestPopularity;
|
||||
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
|
||||
if (PredToDestList[i].second)
|
||||
DestPopularity[PredToDestList[i].second]++;
|
||||
|
||||
// Find the most popular dest.
|
||||
DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
|
||||
BasicBlock *MostPopularDest = DPI->first;
|
||||
unsigned Popularity = DPI->second;
|
||||
SmallVector<BasicBlock*, 4> SamePopularity;
|
||||
|
||||
for (++DPI; DPI != DestPopularity.end(); ++DPI) {
|
||||
// If the popularity of this entry isn't higher than the popularity we've
|
||||
// seen so far, ignore it.
|
||||
if (DPI->second < Popularity)
|
||||
; // ignore.
|
||||
else if (DPI->second == Popularity) {
|
||||
// If it is the same as what we've seen so far, keep track of it.
|
||||
SamePopularity.push_back(DPI->first);
|
||||
} else {
|
||||
// If it is more popular, remember it.
|
||||
SamePopularity.clear();
|
||||
MostPopularDest = DPI->first;
|
||||
Popularity = DPI->second;
|
||||
}
|
||||
}
|
||||
|
||||
// Okay, now we know the most popular destination. If there is more than
|
||||
// destination, we need to determine one. This is arbitrary, but we need
|
||||
// to make a deterministic decision. Pick the first one that appears in the
|
||||
// successor list.
|
||||
if (!SamePopularity.empty()) {
|
||||
SamePopularity.push_back(MostPopularDest);
|
||||
TerminatorInst *TI = BB->getTerminator();
|
||||
for (unsigned i = 0; ; ++i) {
|
||||
assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
|
||||
|
||||
if (std::find(SamePopularity.begin(), SamePopularity.end(),
|
||||
TI->getSuccessor(i)) == SamePopularity.end())
|
||||
continue;
|
||||
|
||||
MostPopularDest = TI->getSuccessor(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Okay, we have finally picked the most popular destination.
|
||||
return MostPopularDest;
|
||||
}
|
||||
|
||||
bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
|
||||
BasicBlock *BB) {
|
||||
// If threading this would thread across a loop header, don't even try to
|
||||
// thread the edge.
|
||||
if (LoopHeaders.count(BB))
|
||||
return false;
|
||||
|
||||
|
||||
|
||||
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
|
||||
if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
|
||||
return false;
|
||||
assert(!PredValues.empty() &&
|
||||
"ComputeValueKnownInPredecessors returned true with no values");
|
||||
|
||||
DEBUG(errs() << "IN BB: " << *BB;
|
||||
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
|
||||
errs() << " BB '" << BB->getName() << "': FOUND condition = ";
|
||||
if (PredValues[i].first)
|
||||
errs() << *PredValues[i].first;
|
||||
else
|
||||
errs() << "UNDEF";
|
||||
errs() << " for pred '" << PredValues[i].second->getName()
|
||||
<< "'.\n";
|
||||
});
|
||||
|
||||
// Decide what we want to thread through. Convert our list of known values to
|
||||
// a list of known destinations for each pred. This also discards duplicate
|
||||
// predecessors and keeps track of the undefined inputs (which are represented
|
||||
// as a null dest in the PredToDestList.
|
||||
SmallPtrSet<BasicBlock*, 16> SeenPreds;
|
||||
SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
|
||||
|
||||
BasicBlock *OnlyDest = 0;
|
||||
BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
|
||||
|
||||
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
|
||||
BasicBlock *Pred = PredValues[i].second;
|
||||
if (!SeenPreds.insert(Pred))
|
||||
continue; // Duplicate predecessor entry.
|
||||
|
||||
// If the predecessor ends with an indirect goto, we can't change its
|
||||
// destination.
|
||||
if (isa<IndirectBrInst>(Pred->getTerminator()))
|
||||
continue;
|
||||
|
||||
ConstantInt *Val = PredValues[i].first;
|
||||
|
||||
BasicBlock *DestBB;
|
||||
if (Val == 0) // Undef.
|
||||
DestBB = 0;
|
||||
else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
|
||||
DestBB = BI->getSuccessor(Val->isZero());
|
||||
else {
|
||||
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
|
||||
DestBB = SI->getSuccessor(SI->findCaseValue(Val));
|
||||
}
|
||||
|
||||
// If we have exactly one destination, remember it for efficiency below.
|
||||
if (i == 0)
|
||||
OnlyDest = DestBB;
|
||||
else if (OnlyDest != DestBB)
|
||||
OnlyDest = MultipleDestSentinel;
|
||||
|
||||
PredToDestList.push_back(std::make_pair(Pred, DestBB));
|
||||
}
|
||||
|
||||
// If all edges were unthreadable, we fail.
|
||||
if (PredToDestList.empty())
|
||||
return false;
|
||||
|
||||
// Determine which is the most common successor. If we have many inputs and
|
||||
// this block is a switch, we want to start by threading the batch that goes
|
||||
// to the most popular destination first. If we only know about one
|
||||
// threadable destination (the common case) we can avoid this.
|
||||
BasicBlock *MostPopularDest = OnlyDest;
|
||||
|
||||
if (MostPopularDest == MultipleDestSentinel)
|
||||
MostPopularDest = FindMostPopularDest(BB, PredToDestList);
|
||||
|
||||
// Now that we know what the most popular destination is, factor all
|
||||
// predecessors that will jump to it into a single predecessor.
|
||||
SmallVector<BasicBlock*, 16> PredsToFactor;
|
||||
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
|
||||
if (PredToDestList[i].second == MostPopularDest) {
|
||||
BasicBlock *Pred = PredToDestList[i].first;
|
||||
|
||||
// This predecessor may be a switch or something else that has multiple
|
||||
// edges to the block. Factor each of these edges by listing them
|
||||
// according to # occurrences in PredsToFactor.
|
||||
TerminatorInst *PredTI = Pred->getTerminator();
|
||||
for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
|
||||
if (PredTI->getSuccessor(i) == BB)
|
||||
PredsToFactor.push_back(Pred);
|
||||
}
|
||||
|
||||
BasicBlock *PredToThread;
|
||||
if (PredsToFactor.size() == 1)
|
||||
PredToThread = PredsToFactor[0];
|
||||
else {
|
||||
DEBUG(errs() << " Factoring out " << PredsToFactor.size()
|
||||
<< " common predecessors.\n");
|
||||
PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
|
||||
PredsToFactor.size(),
|
||||
".thr_comm", this);
|
||||
}
|
||||
|
||||
// If the threadable edges are branching on an undefined value, we get to pick
|
||||
// the destination that these predecessors should get to.
|
||||
if (MostPopularDest == 0)
|
||||
MostPopularDest = BB->getTerminator()->
|
||||
getSuccessor(GetBestDestForJumpOnUndef(BB));
|
||||
|
||||
// Ok, try to thread it!
|
||||
return ThreadEdge(BB, PredToThread, MostPopularDest);
|
||||
}
|
||||
|
||||
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
|
||||
/// the current block. See if there are any simplifications we can do based on
|
||||
@ -981,10 +697,47 @@ bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
|
||||
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
|
||||
BasicBlock *BB = PN->getParent();
|
||||
|
||||
// If any of the predecessor blocks end in an unconditional branch, we can
|
||||
// *duplicate* the jump into that block in order to further encourage jump
|
||||
// threading and to eliminate cases where we have branch on a phi of an icmp
|
||||
// (branch on icmp is much better).
|
||||
// See if the phi node has any constant integer or undef values. If so, we
|
||||
// can determine where the corresponding predecessor will branch.
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *PredVal = PN->getIncomingValue(i);
|
||||
|
||||
// Check to see if this input is a constant integer. If so, the direction
|
||||
// of the branch is predictable.
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
|
||||
// Merge any common predecessors that will act the same.
|
||||
BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
|
||||
|
||||
BasicBlock *SuccBB;
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
|
||||
SuccBB = BI->getSuccessor(CI->isZero());
|
||||
else {
|
||||
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
|
||||
SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
|
||||
}
|
||||
|
||||
// Ok, try to thread it!
|
||||
return ThreadEdge(BB, PredBB, SuccBB);
|
||||
}
|
||||
|
||||
// If the input is an undef, then it doesn't matter which way it will go.
|
||||
// Pick an arbitrary dest and thread the edge.
|
||||
if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
|
||||
// Merge any common predecessors that will act the same.
|
||||
BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
|
||||
BasicBlock *SuccBB =
|
||||
BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
|
||||
|
||||
// Ok, try to thread it!
|
||||
return ThreadEdge(BB, PredBB, SuccBB);
|
||||
}
|
||||
}
|
||||
|
||||
// If the incoming values are all variables, we don't know the destination of
|
||||
// any predecessors. However, if any of the predecessor blocks end in an
|
||||
// unconditional branch, we can *duplicate* the jump into that block in order
|
||||
// to further encourage jump threading and to eliminate cases where we have
|
||||
// branch on a phi of an icmp (branch on icmp is much better).
|
||||
|
||||
// We don't want to do this tranformation for switches, because we don't
|
||||
// really want to duplicate a switch.
|
||||
@ -1005,6 +758,137 @@ bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
|
||||
}
|
||||
|
||||
|
||||
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
|
||||
/// whose condition is an AND/OR where one side is PN. If PN has constant
|
||||
/// operands that permit us to evaluate the condition for some operand, thread
|
||||
/// through the block. For example with:
|
||||
/// br (and X, phi(Y, Z, false))
|
||||
/// the predecessor corresponding to the 'false' will always jump to the false
|
||||
/// destination of the branch.
|
||||
///
|
||||
bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
|
||||
bool isAnd) {
|
||||
// If this is a binary operator tree of the same AND/OR opcode, check the
|
||||
// LHS/RHS.
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
|
||||
if ((isAnd && BO->getOpcode() == Instruction::And) ||
|
||||
(!isAnd && BO->getOpcode() == Instruction::Or)) {
|
||||
if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
|
||||
return true;
|
||||
if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
|
||||
return true;
|
||||
}
|
||||
|
||||
// If this isn't a PHI node, we can't handle it.
|
||||
PHINode *PN = dyn_cast<PHINode>(V);
|
||||
if (!PN || PN->getParent() != BB) return false;
|
||||
|
||||
// We can only do the simplification for phi nodes of 'false' with AND or
|
||||
// 'true' with OR. See if we have any entries in the phi for this.
|
||||
unsigned PredNo = ~0U;
|
||||
ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
|
||||
!isAnd);
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
if (PN->getIncomingValue(i) == PredCst) {
|
||||
PredNo = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If no match, bail out.
|
||||
if (PredNo == ~0U)
|
||||
return false;
|
||||
|
||||
// If so, we can actually do this threading. Merge any common predecessors
|
||||
// that will act the same.
|
||||
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
|
||||
|
||||
// Next, figure out which successor we are threading to. If this was an AND,
|
||||
// the constant must be FALSE, and we must be targeting the 'false' block.
|
||||
// If this is an OR, the constant must be TRUE, and we must be targeting the
|
||||
// 'true' block.
|
||||
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
|
||||
|
||||
// Ok, try to thread it!
|
||||
return ThreadEdge(BB, PredBB, SuccBB);
|
||||
}
|
||||
|
||||
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
|
||||
/// hand sides of the compare instruction, try to determine the result. If the
|
||||
/// result can not be determined, a null pointer is returned.
|
||||
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
|
||||
Value *LHS, Value *RHS,
|
||||
LLVMContext &Context) {
|
||||
if (Constant *CLHS = dyn_cast<Constant>(LHS))
|
||||
if (Constant *CRHS = dyn_cast<Constant>(RHS))
|
||||
return ConstantExpr::getCompare(pred, CLHS, CRHS);
|
||||
|
||||
if (LHS == RHS)
|
||||
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
|
||||
return ICmpInst::isTrueWhenEqual(pred) ?
|
||||
ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
|
||||
/// node and a value. If we can identify when the comparison is true between
|
||||
/// the phi inputs and the value, we can fold the compare for that edge and
|
||||
/// thread through it.
|
||||
bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
|
||||
PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
|
||||
Value *RHS = Cmp->getOperand(1);
|
||||
|
||||
// If the phi isn't in the current block, an incoming edge to this block
|
||||
// doesn't control the destination.
|
||||
if (PN->getParent() != BB)
|
||||
return false;
|
||||
|
||||
// We can do this simplification if any comparisons fold to true or false.
|
||||
// See if any do.
|
||||
Value *PredVal = 0;
|
||||
bool TrueDirection = false;
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
PredVal = PN->getIncomingValue(i);
|
||||
|
||||
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
|
||||
RHS, Cmp->getContext());
|
||||
if (!Res) {
|
||||
PredVal = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
// If this folded to a constant expr, we can't do anything.
|
||||
if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
|
||||
TrueDirection = ResC->getZExtValue();
|
||||
break;
|
||||
}
|
||||
// If this folded to undef, just go the false way.
|
||||
if (isa<UndefValue>(Res)) {
|
||||
TrueDirection = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// Otherwise, we can't fold this input.
|
||||
PredVal = 0;
|
||||
}
|
||||
|
||||
// If no match, bail out.
|
||||
if (PredVal == 0)
|
||||
return false;
|
||||
|
||||
// If so, we can actually do this threading. Merge any common predecessors
|
||||
// that will act the same.
|
||||
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
|
||||
|
||||
// Next, get our successor.
|
||||
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
|
||||
|
||||
// Ok, try to thread it!
|
||||
return ThreadEdge(BB, PredBB, SuccBB);
|
||||
}
|
||||
|
||||
|
||||
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
|
||||
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
|
||||
/// NewPred using the entries from OldPred (suitably mapped).
|
||||
|
@ -170,36 +170,5 @@ BB4:
|
||||
}
|
||||
|
||||
|
||||
;; This tests that the branch in 'merge' can be cloned up into T1.
|
||||
;; rdar://7367025
|
||||
define i32 @test7(i1 %cond, i1 %cond2) {
|
||||
Entry:
|
||||
; CHECK: @test7
|
||||
%v1 = call i32 @f1()
|
||||
br i1 %cond, label %Merge, label %F1
|
||||
|
||||
F1:
|
||||
%v2 = call i32 @f2()
|
||||
br label %Merge
|
||||
|
||||
Merge:
|
||||
%B = phi i32 [%v1, %Entry], [%v2, %F1]
|
||||
%M = icmp ne i32 %B, %v1
|
||||
%N = icmp eq i32 %B, 47
|
||||
%O = and i1 %M, %N
|
||||
br i1 %O, label %T2, label %F2
|
||||
|
||||
; CHECK: Merge:
|
||||
; CHECK-NOT: phi
|
||||
; CHECK-NEXT: %v2 = call i32 @f2()
|
||||
|
||||
T2:
|
||||
call void @f3()
|
||||
ret i32 %B
|
||||
|
||||
F2:
|
||||
ret i32 %B
|
||||
; CHECK: F2:
|
||||
; CHECK-NEXT: phi i32
|
||||
}
|
||||
|
||||
|
@ -170,25 +170,3 @@ bb32.i:
|
||||
ret i32 1
|
||||
}
|
||||
|
||||
|
||||
define fastcc void @test5(i1 %tmp, i32 %tmp1) nounwind ssp {
|
||||
entry:
|
||||
br i1 %tmp, label %bb12, label %bb13
|
||||
|
||||
|
||||
bb12:
|
||||
br label %bb13
|
||||
|
||||
bb13:
|
||||
%.lcssa31 = phi i32 [ undef, %bb12 ], [ %tmp1, %entry ]
|
||||
%A = and i1 undef, undef
|
||||
br i1 %A, label %bb15, label %bb61
|
||||
|
||||
bb15:
|
||||
ret void
|
||||
|
||||
|
||||
bb61:
|
||||
ret void
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user