Generalize support for analyzing loops to include SLE/SGE loop exit conditions

and support for non-unit strides with signed exit conditions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61082 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nick Lewycky
2008-12-16 08:30:01 +00:00
parent 5a6bb6ae78
commit 1447f5ca1f
5 changed files with 64 additions and 26 deletions

View File

@@ -2924,15 +2924,16 @@ bool ScalarEvolutionsImpl::potentialInfiniteLoop(SCEV *Stride, SCEV *RHS,
if (!R)
return true;
if (isSigned)
return true; // XXX: because we don't have an sdiv scev.
// If negative, it wraps around every iteration, but we don't care about that.
APInt S = SC->getValue()->getValue().abs();
APInt Dist = APInt::getMaxValue(R->getValue()->getBitWidth()) -
R->getValue()->getValue();
uint32_t Width = R->getValue()->getBitWidth();
APInt Dist = (isSigned ? APInt::getSignedMaxValue(Width)
: APInt::getMaxValue(Width))
- R->getValue()->getValue();
// Because we're looking at distance, we perform an unsigned comparison,
// regardless of the sign of the computation.
if (trueWhenEqual)
return !S.ult(Dist);
else
@@ -2961,24 +2962,15 @@ HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
// m. So, we count the number of iterations in which {n,+,s} < m is true.
// Note that we cannot simply return max(m-n,0)/s because it's not safe to
// treat m-n as signed nor unsigned due to overflow possibility.
//
// Assuming that the loop will run at least once, we know that it will
// run (m-n)/s times.
// First, we get the value of the LHS in the first iteration: n
SCEVHandle Start = AddRec->getOperand(0);
SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
// Assuming that the loop will run at least once, we know that it will
// run (m-n)/s times.
SCEVHandle End = RHS;
if (!executesAtLeastOnce(L, isSigned, trueWhenEqual,
SE.getMinusSCEV(Start, One), RHS)) {
// If not, we get the value of the LHS in the first iteration in which
// the above condition doesn't hold. This equals to max(m,n).
End = isSigned ? SE.getSMaxExpr(RHS, Start)
: SE.getUMaxExpr(RHS, Start);
}
// If the expression is less-than-or-equal to, we need to extend the
// loop by one iteration.
//
@@ -2986,16 +2978,23 @@ HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
// might not divide cleanly. For example, if you have {2,+,5} u< 10 the
// division would equal one, but the loop runs twice putting the
// induction variable at 12.
SCEVHandle End = SE.getAddExpr(RHS, Stride);
if (!trueWhenEqual)
// (Stride - 1) is correct only because we know it's unsigned.
// What we really want is to decrease the magnitude of Stride by one.
Start = SE.getMinusSCEV(Start, SE.getMinusSCEV(Stride, One));
else
Start = SE.getMinusSCEV(Start, Stride);
End = SE.getMinusSCEV(End, One);
if (!executesAtLeastOnce(L, isSigned, trueWhenEqual,
SE.getMinusSCEV(Start, One), RHS)) {
// If not, we get the value of the LHS in the first iteration in which
// the above condition doesn't hold. This equals to max(m,n).
End = isSigned ? SE.getSMaxExpr(End, Start)
: SE.getUMaxExpr(End, Start);
}
// Finally, we subtract these two values to get the number of times the
// backedge is executed: max(m,n)-n.
// backedge is executed: (max(m,n)-n)/s.
//
// Note that a trip count is always positive. Using SDiv here produces
// wrong answers when Start < End.
return SE.getUDivExpr(SE.getMinusSCEV(End, Start), Stride);
}