- GCSE now no longer counts instructions not removed (due to no common

dominator as being removed)
  - GCSE now uses new Value #'ing interface, instead of dealing with AA itself
  - GCSE worklist implementation much simpler, class cleaned up.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3533 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-08-30 20:22:29 +00:00
parent ada23c05f5
commit 14987f16b4

View File

@ -11,66 +11,43 @@
#include "llvm/InstrTypes.h"
#include "llvm/iMemory.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/ValueNumbering.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Type.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
using std::set;
using std::map;
static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");
namespace {
class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");
Statistic<> NumNonInsts ("gcse\t\t- Number of instructions removed due "
"to non-instruction values");
class GCSE : public FunctionPass {
set<Instruction*> WorkList;
DominatorSet *DomSetInfo;
#if 0
ImmediateDominators *ImmDominator;
AliasAnalysis *AA;
#endif
ValueNumbering *VN;
public:
virtual bool runOnFunction(Function &F);
// Visitation methods, these are invoked depending on the type of
// instruction being checked. They should return true if a common
// subexpression was folded.
//
bool visitBinaryOperator(Instruction &I);
bool visitGetElementPtrInst(GetElementPtrInst &I);
bool visitCastInst(CastInst &I);
bool visitShiftInst(ShiftInst &I) {
return visitBinaryOperator((Instruction&)I);
}
bool visitLoadInst(LoadInst &LI);
bool visitInstruction(Instruction &) { return false; }
private:
bool EliminateRedundancies(Instruction *I,std::vector<Value*> &EqualValues);
Instruction *EliminateCSE(Instruction *I, Instruction *Other);
void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
bool CommonSubExpressionFound(Instruction *I, Instruction *Other);
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with
// removing loads is that intervening stores might make otherwise identical
// load's yield different values. To ensure that this is not the case, we
// check that there are no intervening stores or calls between the
// instructions.
//
bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2);
// CheckForInvalidatingInst - Return true if BB or any of the predecessors
// of BB (until DestBB) contain an instruction that might invalidate Ptr.
//
bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
Value *Ptr, set<BasicBlock*> &VisitedSet);
// This transformation requires dominator and immediate dominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
AU.addRequired<DominatorSet>();
AU.addRequired<ImmediateDominators>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<ValueNumbering>();
}
};
@ -89,8 +66,10 @@ bool GCSE::runOnFunction(Function &F) {
// Get pointers to the analysis results that we will be using...
DomSetInfo = &getAnalysis<DominatorSet>();
#if 0
ImmDominator = &getAnalysis<ImmediateDominators>();
AA = &getAnalysis<AliasAnalysis>();
#endif
VN = &getAnalysis<ValueNumbering>();
// Step #1: Add all instructions in the function to the worklist for
// processing. All of the instructions are considered to be our
@ -106,16 +85,83 @@ bool GCSE::runOnFunction(Function &F) {
Instruction &I = **WorkList.begin(); // Get an instruction from the worklist
WorkList.erase(WorkList.begin());
// Visit the instruction, dispatching to the correct visit function based on
// the instruction type. This does the checking.
// If this instruction computes a value, try to fold together common
// instructions that compute it.
//
Changed |= visit(I);
if (I.getType() != Type::VoidTy) {
std::vector<Value*> EqualValues;
VN->getEqualNumberNodes(&I, EqualValues);
if (!EqualValues.empty())
Changed |= EliminateRedundancies(&I, EqualValues);
}
}
// When the worklist is empty, return whether or not we changed anything...
return Changed;
}
bool GCSE::EliminateRedundancies(Instruction *I,
std::vector<Value*> &EqualValues) {
// If the EqualValues set contains any non-instruction values, then we know
// that all of the instructions can be replaced with the non-instruction value
// because it is guaranteed to dominate all of the instructions in the
// function. We only have to do hard work if all we have are instructions.
//
for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
if (!isa<Instruction>(EqualValues[i])) {
// Found a non-instruction. Replace all instructions with the
// non-instruction.
//
Value *Replacement = EqualValues[i];
// Make sure we get I as well...
EqualValues[i] = I;
// Replace all instructions with the Replacement value.
for (i = 0; i != e; ++i)
if (Instruction *I = dyn_cast<Instruction>(EqualValues[i])) {
// Change all users of I to use Replacement.
I->replaceAllUsesWith(Replacement);
if (isa<LoadInst>(I))
++NumLoadRemoved; // Keep track of loads eliminated
++NumInstRemoved; // Keep track of number of instructions eliminated
++NumNonInsts; // Keep track of number of insts repl with values
// Erase the instruction from the program.
I->getParent()->getInstList().erase(I);
}
return true;
}
// Remove duplicate entries from EqualValues...
std::sort(EqualValues.begin(), EqualValues.end());
EqualValues.erase(std::unique(EqualValues.begin(), EqualValues.end()),
EqualValues.end());
// From this point on, EqualValues is logically a vector of instructions.
//
bool Changed = false;
EqualValues.push_back(I); // Make sure I is included...
while (EqualValues.size() > 1) {
// FIXME, this could be done better than simple iteration!
Instruction *Test = cast<Instruction>(EqualValues.back());
EqualValues.pop_back();
for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
if (Instruction *Ret = EliminateCSE(Test,
cast<Instruction>(EqualValues[i]))) {
if (Ret == Test) // Eliminated EqualValues[i]
EqualValues[i] = Test; // Make sure that we reprocess I at some point
Changed = true;
break;
}
}
return Changed;
}
// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
// uses of the instruction use First now instead.
@ -140,20 +186,22 @@ void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
Second.getParent()->getInstList().erase(SI);
}
// CommonSubExpressionFound - The two instruction I & Other have been found to
// be common subexpressions. This function is responsible for eliminating one
// of them, and for fixing the worklist to be correct.
// EliminateCSE - The two instruction I & Other have been found to be common
// subexpressions. This function is responsible for eliminating one of them,
// and for fixing the worklist to be correct. The instruction that is preserved
// is returned from the function if the other is eliminated, otherwise null is
// returned.
//
bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
Instruction *GCSE::EliminateCSE(Instruction *I, Instruction *Other) {
assert(I != Other);
WorkList.erase(I);
WorkList.erase(Other); // Other may not actually be on the worklist anymore...
++NumInstRemoved; // Keep track of number of instructions eliminated
// Handle the easy case, where both instructions are in the same basic block
BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
Instruction *Ret = 0;
if (BB1 == BB2) {
// Eliminate the second occuring instruction. Add all uses of the second
// instruction to the worklist.
@ -171,15 +219,18 @@ bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
BI = Second;
// Destroy Second, using First instead.
ReplaceInstWithInst(First, BI);
ReplaceInstWithInst(First, BI);
Ret = First;
// Otherwise, the two instructions are in different basic blocks. If one
// dominates the other instruction, we can simply use it
//
} else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other?
ReplaceInstWithInst(I, Other);
Ret = I;
} else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I?
ReplaceInstWithInst(Other, I);
Ret = Other;
} else {
// This code is disabled because it has several problems:
// One, the actual assumption is wrong, as shown by this code:
@ -207,7 +258,7 @@ bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
// general the problem this case is trying to solve is better addressed with
// PRE than GCSE.
//
return false;
return 0;
#if 0
// Handle the most general case now. In this case, neither I dom Other nor
@ -235,215 +286,15 @@ bool GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
ReplaceInstWithInst(I, Other);
#endif
}
return true;
}
//===----------------------------------------------------------------------===//
//
// Visitation methods, these are invoked depending on the type of instruction
// being checked. They should return true if a common subexpression was folded.
//
//===----------------------------------------------------------------------===//
bool GCSE::visitCastInst(CastInst &CI) {
Instruction &I = (Instruction&)CI;
Value *Op = I.getOperand(0);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new cast is not I, but has the same operand...
if (Other != &I && Other->getOpcode() == I.getOpcode() &&
Other->getOperand(0) == Op && // Is the operand the same?
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
Other->getParent()->getParent() == F &&
// Check that the types are the same, since this code handles casts...
Other->getType() == I.getType()) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
// isIdenticalBinaryInst - Return true if the two binary instructions are
// identical.
//
static inline bool isIdenticalBinaryInst(const Instruction &I1,
const Instruction *I2) {
// Is it embeded in the same function? (This could be false if LHS
// is a constant or global!)
if (I1.getOpcode() != I2->getOpcode() ||
I1.getParent()->getParent() != I2->getParent()->getParent())
return false;
// They are identical if both operands are the same!
if (I1.getOperand(0) == I2->getOperand(0) &&
I1.getOperand(1) == I2->getOperand(1))
return true;
// If the instruction is commutative and associative, the instruction can
// match if the operands are swapped!
//
if ((I1.getOperand(0) == I2->getOperand(1) &&
I1.getOperand(1) == I2->getOperand(0)) &&
(I1.getOpcode() == Instruction::Add ||
I1.getOpcode() == Instruction::Mul ||
I1.getOpcode() == Instruction::And ||
I1.getOpcode() == Instruction::Or ||
I1.getOpcode() == Instruction::Xor))
return true;
return false;
}
bool GCSE::visitBinaryOperator(Instruction &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
UI != UE; ++UI)
if (Instruction *Other = dyn_cast<Instruction>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != &I && isIdenticalBinaryInst(I, Other)) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
// IdenticalComplexInst - Return true if the two instructions are the same, by
// using a brute force comparison.
//
static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) {
assert(I1->getOpcode() == I2->getOpcode());
// Equal if they are in the same function...
return I1->getParent()->getParent() == I2->getParent()->getParent() &&
// And return the same type...
I1->getType() == I2->getType() &&
// And have the same number of operands...
I1->getNumOperands() == I2->getNumOperands() &&
// And all of the operands are equal.
std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
}
bool GCSE::visitGetElementPtrInst(GetElementPtrInst &I) {
Value *Op = I.getOperand(0);
Function *F = I.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
// Check to see if this new getelementptr is not I, but same operand...
if (Other != &I && IdenticalComplexInst(&I, Other)) {
// These instructions are identical. Handle the situation.
if (CommonSubExpressionFound(&I, Other))
return true; // One instruction eliminated!
}
return false;
}
bool GCSE::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
Function *F = LI.getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (LoadInst *Other = dyn_cast<LoadInst>(*UI))
// Check to see if this new load is not LI, but has the same operands...
if (Other != &LI && IdenticalComplexInst(&LI, Other) &&
TryToRemoveALoad(&LI, Other))
return true; // An instruction was eliminated!
return false;
}
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing
// loads is that intervening stores might make otherwise identical load's yield
// different values. To ensure that this is not the case, we check that there
// are no intervening stores or calls between the instructions.
//
bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) {
// Figure out which load dominates the other one. If neither dominates the
// other we cannot eliminate one...
//
if (DomSetInfo->dominates(L2, L1))
std::swap(L1, L2); // Make L1 dominate L2
else if (!DomSetInfo->dominates(L1, L2))
return false; // Neither instruction dominates the other one...
BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();
Value *LoadAddress = L1->getOperand(0);
// L1 now dominates L2. Check to see if the intervening instructions between
// the two loads include a store or call...
//
if (BB1 == BB2) { // In same basic block?
// In this degenerate case, no checking of global basic blocks has to occur
// just check the instructions BETWEEN L1 & L2...
//
if (AA->canInstructionRangeModify(*L1, *L2, LoadAddress))
return false; // Cannot eliminate load
++NumLoadRemoved;
if (CommonSubExpressionFound(L1, L2))
return true;
} else {
// Make sure that there are no store instructions between L1 and the end of
// it's basic block...
//
if (AA->canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress))
return false; // Cannot eliminate load
// Make sure that there are no store instructions between the start of BB2
// and the second load instruction...
//
if (AA->canInstructionRangeModify(BB2->front(), *L2, LoadAddress))
return false; // Cannot eliminate load
// Do a depth first traversal of the inverse CFG starting at L2's block,
// looking for L1's block. The inverse CFG is made up of the predecessor
// nodes of a block... so all of the edges in the graph are "backward".
//
set<BasicBlock*> VisitedSet;
for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, VisitedSet))
return false;
++NumLoadRemoved;
return CommonSubExpressionFound(L1, L2);
}
return false;
}
// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
// (until DestBB) contain an instruction that might invalidate Ptr.
//
bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
Value *Ptr, set<BasicBlock*> &VisitedSet) {
// Found the termination point!
if (BB == DestBB || VisitedSet.count(BB)) return false;
// Avoid infinite recursion!
VisitedSet.insert(BB);
// Can this basic block modify Ptr?
if (AA->canBasicBlockModify(*BB, Ptr))
return true;
// Check all of our predecessor blocks...
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, DestBB, Ptr, VisitedSet))
return true;
// None of our predecessor blocks contain a store, and we don't either!
return false;
if (isa<LoadInst>(Ret))
++NumLoadRemoved; // Keep track of loads eliminated
++NumInstRemoved; // Keep track of number of instructions eliminated
// Add all users of Ret to the worklist...
for (Value::use_iterator I = Ret->use_begin(), E = Ret->use_end(); I != E;++I)
if (Instruction *Inst = dyn_cast<Instruction>(*I))
WorkList.insert(Inst);
return Ret;
}