* Don't save LR when outputting globals: it's already saved on the stack once

for the function
* Registers aren't necessarily sequential wrt their enums, don't rely on it
  when emitting function arguments into sequential registers
* Remove X86-specific comments about AL/BL/AH/BH/EDX/etc
* Add an abort() for an unimplemented signed right shift
* The src operand for a GEP was never emitted!  Fixed.
* We can skip zero-valued GEP indices as they are no-ops.

"Hello, World!" now works.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14505 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2004-06-29 23:45:05 +00:00
parent 61297ee118
commit 14d8c7a6a0
2 changed files with 92 additions and 82 deletions

View File

@ -366,16 +366,11 @@ unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
return Reg; return Reg;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// GV is located at PC + distance // GV is located at PC + distance
unsigned LRsave = makeAnotherReg(Type::IntTy);
unsigned CurPC = makeAnotherReg(Type::IntTy); unsigned CurPC = makeAnotherReg(Type::IntTy);
unsigned Reg1 = makeAnotherReg(V->getType()); unsigned Reg1 = makeAnotherReg(V->getType());
unsigned Reg2 = makeAnotherReg(V->getType()); unsigned Reg2 = makeAnotherReg(V->getType());
// Save the old LR
BuildMI(*MBB, IPt, PPC32::MFLR, 0, LRsave);
// Move PC to destination reg // Move PC to destination reg
BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC); BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
// Restore the old LR
BuildMI(*MBB, IPt, PPC32::MTLR, 1).addReg(LRsave);
// Move value at PC + distance into return reg // Move value at PC + distance into return reg
BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC) BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
.addGlobalAddress(GV); .addGlobalAddress(GV);
@ -1202,10 +1197,16 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Arguments go on the stack in reverse order, as specified by the ABI. // Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0; unsigned ArgOffset = 0;
unsigned GPR_remaining = 8; int GPR_remaining = 8, FPR_remaining = 8;
unsigned FPR_remaining = 13; unsigned GPR[] = {
unsigned GPR_idx = 3; PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
unsigned FPR_idx = 1; PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
};
unsigned FPR[] = {
PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4,
PPC32::F5, PPC32::F6, PPC32::F7, PPC32::F8
};
unsigned GPR_idx = 0, FPR_idx = 0;
for (unsigned i = 0, e = Args.size(); i != e; ++i) { for (unsigned i = 0, e = Args.size(); i != e; ++i) {
unsigned ArgReg; unsigned ArgReg;
@ -1218,7 +1219,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 0) { if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1230,7 +1231,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 0) { if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1242,9 +1243,9 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 1) { if (GPR_remaining > 1) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
.addReg(ArgReg+1); .addReg(ArgReg+1);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1254,17 +1255,15 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
} }
ArgOffset += 4; // 8 byte entry, not 4. ArgOffset += 4; // 8 byte entry, not 4.
if (GPR_remaining > 0) { GPR_remaining -= 1; // uses up 2 GPRs
GPR_remaining -= 1; // uses up 2 GPRs GPR_idx += 1;
GPR_idx += 1;
}
break; break;
case cFP: case cFP:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
if (Args[i].Ty == Type::FloatTy) { if (Args[i].Ty == Type::FloatTy) {
// Reg or stack? // Reg or stack?
if (FPR_remaining > 0) { if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
FPR_remaining--; FPR_remaining--;
FPR_idx++; FPR_idx++;
} else { } else {
@ -1275,7 +1274,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
// Reg or stack? // Reg or stack?
if (FPR_remaining > 0) { if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
FPR_remaining--; FPR_remaining--;
FPR_idx++; FPR_idx++;
} else { } else {
@ -1284,20 +1283,16 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
} }
ArgOffset += 4; // 8 byte entry, not 4. ArgOffset += 4; // 8 byte entry, not 4.
if (GPR_remaining > 0) { GPR_remaining--; // uses up 2 GPRs
GPR_remaining--; // uses up 2 GPRs GPR_idx++;
GPR_idx++;
}
} }
break; break;
default: assert(0 && "Unknown class!"); default: assert(0 && "Unknown class!");
} }
ArgOffset += 4; ArgOffset += 4;
if (GPR_remaining > 0) { GPR_remaining--;
GPR_remaining--; // uses up 2 GPRs GPR_idx++;
GPR_idx++;
}
} }
} else { } else {
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0); BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
@ -1863,7 +1858,7 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned AHBLplusOverflowReg; unsigned AHBLplusOverflowReg;
if (OverflowReg) { if (OverflowReg) {
AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
} else { } else {
AHBLplusOverflowReg = AHBLReg; AHBLplusOverflowReg = AHBLReg;
@ -1873,10 +1868,10 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg) BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
.addReg(AHBLplusOverflowReg); .addReg(AHBLplusOverflowReg);
} else { } else {
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
} }
return; return;
@ -1886,23 +1881,23 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned Op1Reg = getReg(Op1, &BB, IP); unsigned Op1Reg = getReg(Op1, &BB, IP);
// Multiply the two low parts... capturing carry into EDX // Multiply the two low parts...
BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
unsigned OverflowReg = makeAnotherReg(Type::UIntTy); unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); .addReg(OverflowReg);
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
} }
@ -2134,8 +2129,10 @@ void ISel::emitShiftOperation(MachineBasicBlock *MBB,
.addReg(ShiftAmountReg); .addReg(ShiftAmountReg);
} else { } else {
if (isSigned) { if (isSigned) {
// FIXME: Unimplmented // FIXME: Unimplemented
// Page C-3 of the PowerPC 32bit Programming Environments Manual // Page C-3 of the PowerPC 32bit Programming Environments Manual
std::cerr << "Unimplemented: signed right shift\n";
abort();
} else { } else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addImm(32); .addImm(32);
@ -2613,7 +2610,13 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
gep_type_end(Src->getType(), IdxBegin, IdxEnd)); gep_type_end(Src->getType(), IdxBegin, IdxEnd));
// Keep emitting instructions until we consume the entire GEP instruction. // Keep emitting instructions until we consume the entire GEP instruction.
while (!GEPTypes.empty()) { while (!GEPOps.empty()) {
if (GEPTypes.empty()) {
// Load the base pointer into a register.
unsigned Reg = getReg(Src, MBB, IP);
BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
break; // we are now done
}
// It's an array or pointer access: [ArraySize x ElementType]. // It's an array or pointer access: [ArraySize x ElementType].
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
Value *idx = GEPOps.back(); Value *idx = GEPOps.back();
@ -2621,7 +2624,7 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
GEPTypes.pop_back(); GEPTypes.pop_back();
// Many GEP instructions use a [cast (int/uint) to LongTy] as their // Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand on X86. Handle this case directly now... // operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx)) if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy || if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy) CI->getOperand(0)->getType() == Type::UIntTy)
@ -2633,7 +2636,9 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
const Type *ElTy = SqTy->getElementType(); const Type *ElTy = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(ElTy); unsigned elementSize = TD.getTypeSize(ElTy);
if (elementSize == 1) { if (idx == Constant::getNullValue(idx->getType())) {
// GEP with idx 0 is a no-op
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add // If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP); unsigned idxReg = getReg(idx, MBB, IP);
unsigned Reg = makeAnotherReg(Type::UIntTy); unsigned Reg = makeAnotherReg(Type::UIntTy);

View File

@ -366,16 +366,11 @@ unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
return Reg; return Reg;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// GV is located at PC + distance // GV is located at PC + distance
unsigned LRsave = makeAnotherReg(Type::IntTy);
unsigned CurPC = makeAnotherReg(Type::IntTy); unsigned CurPC = makeAnotherReg(Type::IntTy);
unsigned Reg1 = makeAnotherReg(V->getType()); unsigned Reg1 = makeAnotherReg(V->getType());
unsigned Reg2 = makeAnotherReg(V->getType()); unsigned Reg2 = makeAnotherReg(V->getType());
// Save the old LR
BuildMI(*MBB, IPt, PPC32::MFLR, 0, LRsave);
// Move PC to destination reg // Move PC to destination reg
BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC); BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
// Restore the old LR
BuildMI(*MBB, IPt, PPC32::MTLR, 1).addReg(LRsave);
// Move value at PC + distance into return reg // Move value at PC + distance into return reg
BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC) BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
.addGlobalAddress(GV); .addGlobalAddress(GV);
@ -1202,10 +1197,16 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Arguments go on the stack in reverse order, as specified by the ABI. // Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0; unsigned ArgOffset = 0;
unsigned GPR_remaining = 8; int GPR_remaining = 8, FPR_remaining = 8;
unsigned FPR_remaining = 13; unsigned GPR[] = {
unsigned GPR_idx = 3; PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
unsigned FPR_idx = 1; PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
};
unsigned FPR[] = {
PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4,
PPC32::F5, PPC32::F6, PPC32::F7, PPC32::F8
};
unsigned GPR_idx = 0, FPR_idx = 0;
for (unsigned i = 0, e = Args.size(); i != e; ++i) { for (unsigned i = 0, e = Args.size(); i != e; ++i) {
unsigned ArgReg; unsigned ArgReg;
@ -1218,7 +1219,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 0) { if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1230,7 +1231,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 0) { if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1242,9 +1243,9 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
// Reg or stack? // Reg or stack?
if (GPR_remaining > 1) { if (GPR_remaining > 1) {
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg); .addReg(ArgReg);
BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1) BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
.addReg(ArgReg+1); .addReg(ArgReg+1);
} else { } else {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
@ -1254,17 +1255,15 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
} }
ArgOffset += 4; // 8 byte entry, not 4. ArgOffset += 4; // 8 byte entry, not 4.
if (GPR_remaining > 0) { GPR_remaining -= 1; // uses up 2 GPRs
GPR_remaining -= 1; // uses up 2 GPRs GPR_idx += 1;
GPR_idx += 1;
}
break; break;
case cFP: case cFP:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
if (Args[i].Ty == Type::FloatTy) { if (Args[i].Ty == Type::FloatTy) {
// Reg or stack? // Reg or stack?
if (FPR_remaining > 0) { if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
FPR_remaining--; FPR_remaining--;
FPR_idx++; FPR_idx++;
} else { } else {
@ -1275,7 +1274,7 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
// Reg or stack? // Reg or stack?
if (FPR_remaining > 0) { if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
FPR_remaining--; FPR_remaining--;
FPR_idx++; FPR_idx++;
} else { } else {
@ -1284,20 +1283,16 @@ void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
} }
ArgOffset += 4; // 8 byte entry, not 4. ArgOffset += 4; // 8 byte entry, not 4.
if (GPR_remaining > 0) { GPR_remaining--; // uses up 2 GPRs
GPR_remaining--; // uses up 2 GPRs GPR_idx++;
GPR_idx++;
}
} }
break; break;
default: assert(0 && "Unknown class!"); default: assert(0 && "Unknown class!");
} }
ArgOffset += 4; ArgOffset += 4;
if (GPR_remaining > 0) { GPR_remaining--;
GPR_remaining--; // uses up 2 GPRs GPR_idx++;
GPR_idx++;
}
} }
} else { } else {
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0); BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
@ -1863,7 +1858,7 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned AHBLplusOverflowReg; unsigned AHBLplusOverflowReg;
if (OverflowReg) { if (OverflowReg) {
AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
} else { } else {
AHBLplusOverflowReg = AHBLReg; AHBLplusOverflowReg = AHBLReg;
@ -1873,10 +1868,10 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg) BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
.addReg(AHBLplusOverflowReg); .addReg(AHBLplusOverflowReg);
} else { } else {
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
} }
return; return;
@ -1886,23 +1881,23 @@ void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned Op1Reg = getReg(Op1, &BB, IP); unsigned Op1Reg = getReg(Op1, &BB, IP);
// Multiply the two low parts... capturing carry into EDX // Multiply the two low parts...
BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
unsigned OverflowReg = makeAnotherReg(Type::UIntTy); unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); .addReg(OverflowReg);
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) BuildMI(BB, IP, PPC32::ADD, 2,
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
} }
@ -2134,8 +2129,10 @@ void ISel::emitShiftOperation(MachineBasicBlock *MBB,
.addReg(ShiftAmountReg); .addReg(ShiftAmountReg);
} else { } else {
if (isSigned) { if (isSigned) {
// FIXME: Unimplmented // FIXME: Unimplemented
// Page C-3 of the PowerPC 32bit Programming Environments Manual // Page C-3 of the PowerPC 32bit Programming Environments Manual
std::cerr << "Unimplemented: signed right shift\n";
abort();
} else { } else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addImm(32); .addImm(32);
@ -2613,7 +2610,13 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
gep_type_end(Src->getType(), IdxBegin, IdxEnd)); gep_type_end(Src->getType(), IdxBegin, IdxEnd));
// Keep emitting instructions until we consume the entire GEP instruction. // Keep emitting instructions until we consume the entire GEP instruction.
while (!GEPTypes.empty()) { while (!GEPOps.empty()) {
if (GEPTypes.empty()) {
// Load the base pointer into a register.
unsigned Reg = getReg(Src, MBB, IP);
BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
break; // we are now done
}
// It's an array or pointer access: [ArraySize x ElementType]. // It's an array or pointer access: [ArraySize x ElementType].
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
Value *idx = GEPOps.back(); Value *idx = GEPOps.back();
@ -2621,7 +2624,7 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
GEPTypes.pop_back(); GEPTypes.pop_back();
// Many GEP instructions use a [cast (int/uint) to LongTy] as their // Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand on X86. Handle this case directly now... // operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx)) if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy || if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy) CI->getOperand(0)->getType() == Type::UIntTy)
@ -2633,7 +2636,9 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
const Type *ElTy = SqTy->getElementType(); const Type *ElTy = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(ElTy); unsigned elementSize = TD.getTypeSize(ElTy);
if (elementSize == 1) { if (idx == Constant::getNullValue(idx->getType())) {
// GEP with idx 0 is a no-op
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add // If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP); unsigned idxReg = getReg(idx, MBB, IP);
unsigned Reg = makeAnotherReg(Type::UIntTy); unsigned Reg = makeAnotherReg(Type::UIntTy);