Adds support for variable sized allocas. For a variable sized alloca,

code is inserted to first check if the current stacklet has enough
space. If so, space is allocated by simply decrementing the stack
pointer. Otherwise a runtime routine (__morestack_allocate_stack_space
in libgcc) is called which allocates the required memory from the
heap.

Patch by Sanjoy Das.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138818 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2011-08-30 19:47:04 +00:00
parent d07b7ec772
commit 151ab3e2f7
2 changed files with 166 additions and 15 deletions

View File

@ -51,6 +51,7 @@
#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h" #include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h" #include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm; using namespace llvm;
using namespace dwarf; using namespace dwarf;
@ -522,8 +523,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, setOperationAction(ISD::DYNAMIC_STACKALLOC,
(Subtarget->is64Bit() ? MVT::i64 : MVT::i32), (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
(Subtarget->isTargetCOFF() ((Subtarget->isTargetCOFF()
&& !Subtarget->isTargetEnvMacho() && !Subtarget->isTargetEnvMacho()) ||
EnableSegmentedStacks
? Custom : Expand)); ? Custom : Expand));
if (!UseSoftFloat && X86ScalarSSEf64) { if (!UseSoftFloat && X86ScalarSSEf64) {
@ -8844,8 +8846,10 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDValue SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const { SelectionDAG &DAG) const {
assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) && assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
"This should be used only on Windows targets"); EnableSegmentedStacks) &&
"This should be used only on Windows targets or when segmented stacks "
"are being used.");
assert(!Subtarget->isTargetEnvMacho()); assert(!Subtarget->isTargetEnvMacho());
DebugLoc dl = Op.getDebugLoc(); DebugLoc dl = Op.getDebugLoc();
@ -8854,23 +8858,49 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SDValue Size = Op.getOperand(1); SDValue Size = Op.getOperand(1);
// FIXME: Ensure alignment here // FIXME: Ensure alignment here
SDValue Flag; bool Is64Bit = Subtarget->is64Bit();
EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; if (EnableSegmentedStacks) {
unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX); MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); if (Is64Bit) {
Flag = Chain.getValue(1); // The 64 bit implementation of segmented stacks needs to clobber both r10
// r11. This makes it impossible to use it along with nested paramenters.
const Function *F = MF.getFunction();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; I++)
if (I->hasNestAttr())
report_fatal_error("Cannot use segmented stacks with functions that "
"have nested arguments.");
}
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); const TargetRegisterClass *AddrRegClass =
Flag = Chain.getValue(1); getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
DAG.getRegister(Vreg, SPTy));
SDValue Ops1[2] = { Value, Chain };
return DAG.getMergeValues(Ops1, 2, dl);
} else {
SDValue Flag;
unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
Flag = Chain.getValue(1);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops1[2] = { Chain.getValue(0), Chain }; Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
return DAG.getMergeValues(Ops1, 2, dl); Flag = Chain.getValue(1);
Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
SDValue Ops1[2] = { Chain.getValue(0), Chain };
return DAG.getMergeValues(Ops1, 2, dl);
}
} }
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
@ -11634,6 +11664,119 @@ X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
return sinkMBB; return sinkMBB;
} }
MachineBasicBlock *
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
bool Is64Bit) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(EnableSegmentedStacks);
unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
// BB:
// ... [Till the alloca]
// If stacklet is not large enough, jump to mallocMBB
//
// bumpMBB:
// Allocate by subtracting from RSP
// Jump to continueMBB
//
// mallocMBB:
// Allocate by call to runtime
//
// continueMBB:
// ...
// [rest of original BB]
//
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI->getOperand(1).getReg(),
physSPReg = Is64Bit ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = BB;
++MBBIter;
MF->insert(MBBIter, bumpMBB);
MF->insert(MBBIter, mallocMBB);
MF->insert(MBBIter, continueMBB);
continueMBB->splice(continueMBB->begin(), BB, llvm::next
(MachineBasicBlock::iterator(MI)), BB->end());
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(tmpSPVReg);
BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
.addReg(tmpSPVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(tmpSPVReg);
BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
if (Is64Bit) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol("__morestack_allocate_stack_space");
}
if (!Is64Bit)
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
.addReg(Is64Bit ? X86::RAX : X86::EAX);
BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
BB->addSuccessor(mallocMBB);
mallocMBB->addSuccessor(continueMBB);
bumpMBB->addSuccessor(continueMBB);
// Take care of the PHI nodes.
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
MI->getOperand(0).getReg())
.addReg(mallocPtrVReg).addMBB(mallocMBB)
.addReg(bumpSPPtrVReg).addMBB(bumpMBB);
// Delete the original pseudo instruction.
MI->eraseFromParent();
// And we're done.
return continueMBB;
}
MachineBasicBlock * MachineBasicBlock *
X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const { MachineBasicBlock *BB) const {
@ -11769,6 +11912,10 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
return BB; return BB;
case X86::WIN_ALLOCA: case X86::WIN_ALLOCA:
return EmitLoweredWinAlloca(MI, BB); return EmitLoweredWinAlloca(MI, BB);
case X86::SEG_ALLOCA_32:
return EmitLoweredSegAlloca(MI, BB, false);
case X86::SEG_ALLOCA_64:
return EmitLoweredSegAlloca(MI, BB, true);
case X86::TLSCall_32: case X86::TLSCall_32:
case X86::TLSCall_64: case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB); return EmitLoweredTLSCall(MI, BB);

View File

@ -942,6 +942,10 @@ namespace llvm {
MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const; MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
MachineBasicBlock *BB,
bool Is64Bit) const;
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
MachineBasicBlock *BB) const; MachineBasicBlock *BB) const;