First wave of cleanups, looks like the first of many.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2567 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-05-09 02:28:59 +00:00
parent 403717156b
commit 16c7bb2c8f
2 changed files with 324 additions and 584 deletions

View File

@ -1,10 +1,12 @@
//===-- Writer.cpp - Library for writing C files -----------------*- C++ -*--=//
//===-- Writer.cpp - Library for writing C files --------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/CWriter.h
// and CLocalVars.h
//
// TODO : Recursive types.
//
//===-----------------------------------------------------------------------==//
#include "llvm/Assembly/CWriter.h"
#include "CLocalVars.h"
#include "llvm/SlotCalculator.h"
@ -31,7 +33,9 @@ using std::map;
using std::vector;
using std::ostream;
/* Implementation of the CLocalVars methods */
//===-----------------------------------------------------------------------==//
//
// Implementation of the CLocalVars methods
// Appends a variable to the LocalVars map if it does not already exist
// Also check that the type exists on the map.
@ -43,8 +47,7 @@ void CLocalVars::addLocalVar(const Type *t, const string & var) {
}
}
/* Writer.cpp */
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar);
@ -139,8 +142,7 @@ static std::string getConstArrayStrValue(const Constant* CPV) {
if (isprint(C)) {
Result += C;
} else {
Result += '\\';
Result += 'x';
Result += "\\x";
Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
}
@ -187,7 +189,7 @@ static std::string getConstStrValue(const Constant* CPV) {
tempstr = getConstStructStrValue(CPV);
}
else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(CPV)) {
tempstr = utostr((long long unsigned int) CUI->getValue());
tempstr = utostr(CUI->getValue());
}
else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CPV)) {
tempstr = itostr(CSI->getValue());
@ -208,42 +210,11 @@ static std::string getConstStrValue(const Constant* CPV) {
}
// WriteCOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %0 not the
// whole instruction that generated it.
//
static void WriteCOperandInternal(ostream &Out, const Value *V,
bool PrintName, SlotCalculator *Table,
string &OperandType) {
int Slot;
if (PrintName && V->hasName()) {
// If V has a name.
Out << "llvm__" << makeNameProper(V->getName()) << "_" <<
(V->getType())->getUniqueID();
return;
}
else if (const Constant *CPV = dyn_cast<const Constant>(V)) {
if (isa<ConstantPointerNull>(CPV)) {
Out << "(" << OperandType << ")0";
}
else
Out << getConstStrValue(CPV);
}
else {
Slot = Table->getValSlot(V);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_" << V->getType()->getUniqueID();
else if (PrintName)
Out << "<badref>";
}
}
// Internal function
// Essentially pass the Type* variable, an empty typestack and this prints
// out the C type
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames,
string *FunctionInfo) {
static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
string &FunctionInfo) {
// Takin' care of the fact that boolean would be int in C
// and that ushort would be unsigned short etc.
@ -251,29 +222,19 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
// Base Case
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int";
break;
case Type::UByteTyID:
return "unsigned char";
break;
case Type::SByteTyID:
return "signed char";
break;
case Type::UShortTyID:
return "unsigned long long";
break;
case Type::ULongTyID:
return "unsigned long long";
break;
case Type::LongTyID:
return "signed long long";
break;
case Type::UIntTyID:
return "unsigned int";
break;
default :
return Ty->getDescription();
case Type::VoidTyID: return "void";
case Type::BoolTyID: return "bool";
case Type::UByteTyID: return "unsigned char";
case Type::SByteTyID: return "signed char";
case Type::UShortTyID: return "unsigned short";
case Type::ShortTyID: return "short";
case Type::UIntTyID: return "unsigned";
case Type::IntTyID: return "int";
case Type::ULongTyID: return "unsigned long long";
case Type::LongTyID: return "signed long long";
case Type::FloatTyID: return "float";
case Type::DoubleTyID: return "double";
default : assert(0 && "Unknown primitive type!");
}
// Check to see if the type is named.
@ -281,45 +242,32 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
if (I != TypeNames.end())
return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string MInfo = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
Result = calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += "(";
*FunctionInfo += " (";
FunctionInfo += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
*FunctionInfo += ", ";
FunctionInfo += ", ";
MInfo = "";
*FunctionInfo += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
FunctionInfo += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
*FunctionInfo += ", ";
*FunctionInfo += "...";
FunctionInfo += ", ";
FunctionInfo += "...";
}
*FunctionInfo += ")";
FunctionInfo += ")";
break;
}
case Type::StructTyID: {
@ -330,7 +278,7 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), tempstr);
Result += ";\n ";
}
@ -339,13 +287,13 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, &MInfo);
TypeNames, MInfo);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeName(ATy->getElementType(), TypeStack, TypeNames, &MInfo);
Result = calcTypeName(ATy->getElementType(), TypeNames, MInfo);
Result += "*";
break;
}
@ -354,7 +302,6 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
@ -364,32 +311,25 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
// This is different from calcTypeName because if you need to declare an array
// the size of the array would appear after the variable name itself
// For eg. int a[10];
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar) {
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int " + NameSoFar + VariableName;
break;
return "bool " + NameSoFar + VariableName;
case Type::UByteTyID:
return "unsigned char " + NameSoFar + VariableName;
break;
case Type::SByteTyID:
return "signed char " + NameSoFar + VariableName;
break;
case Type::UShortTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::ULongTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::LongTyID:
return "signed long long " + NameSoFar + VariableName;
break;
case Type::UIntTyID:
return "unsigned int " + NameSoFar + VariableName;
break;
return "unsigned " + NameSoFar + VariableName;
default :
return Ty->getDescription() + " " + NameSoFar + VariableName;
}
@ -399,16 +339,6 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
if (I != TypeNames.end())
return I->second + " " + NameSoFar + VariableName;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot) + " " + NameSoFar + VariableName;
// Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string tempstr = "";
@ -416,7 +346,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::FunctionTyID: {
string MInfo = "";
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result += calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
Result += calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += " " + NameSoFar + VariableName;
@ -427,7 +357,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
if (I != MTy->getParamTypes().begin())
Result += ", ";
MInfo = "";
Result += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
Result += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
@ -446,7 +376,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), "");
Result += ";\n ";
}
@ -457,7 +387,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::PointerTyID: {
Result = calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, tempstr,
TypeNames, tempstr,
"(*" + NameSoFar + VariableName + ")");
break;
}
@ -465,7 +395,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeNameVar(ATy->getElementType(), TypeStack, TypeNames,
Result = calcTypeNameVar(ATy->getElementType(), TypeNames,
tempstr, NameSoFar + VariableName + "[" +
itostr(NumElements) + "]");
break;
@ -475,7 +405,6 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
@ -487,31 +416,22 @@ static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int " << VariableName;
break;
return Out << "bool " << VariableName;
case Type::UByteTyID:
return Out << "unsigned char " << VariableName;
break;
case Type::SByteTyID:
return Out << "signed char " << VariableName;
break;
case Type::UShortTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::ULongTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::LongTyID:
return Out << "signed long long " << VariableName;
break;
case Type::UIntTyID:
return Out << "unsigned int " << VariableName;
break;
return Out << "unsigned " << VariableName;
default :
return Out << Ty->getDescription() << " " << VariableName;
}
@ -524,14 +444,9 @@ static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string TypeNameVar, tempstr = "";
TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames, VariableName,
tempstr);
TypeNameVar = calcTypeNameVar(Ty, TypeNames, VariableName, tempstr);
return Out << TypeNameVar;
// TODO: Check what happens to caching
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
}
// Internal guts of printing a type name
@ -540,32 +455,22 @@ static ostream &printTypeInt(ostream &Out, const Type *Ty,
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int";
break;
return Out << "bool";
case Type::UByteTyID:
return Out << "unsigned char";
break;
case Type::SByteTyID:
return Out << "signed char";
break;
case Type::UShortTyID:
return Out << "unsigned long long";
break;
return Out << "unsigned short";
case Type::ULongTyID:
return Out << "unsigned long long";
break;
case Type::LongTyID:
return Out << "signed long long";
break;
case Type::UIntTyID:
return Out << "unsigned int";
break;
return Out << "unsigned";
default :
return Out << Ty->getDescription();
}
@ -578,9 +483,8 @@ static ostream &printTypeInt(ostream &Out, const Type *Ty,
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string MInfo = "";
string TypeName = calcTypeName(Ty, TypeStack, TypeNames, &MInfo);
string MInfo;
string TypeName = calcTypeName(Ty, TypeNames, MInfo);
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
if (MInfo != "")
@ -600,10 +504,9 @@ namespace {
public:
inline CWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
}
inline void write(const Module *M) { printModule(M); }
inline void write(const Module *M) { printModule(M); }
ostream& printTypeVar(const Type *Ty, string VariableName, ostream &Out);
ostream& printType(const Type *Ty, ostream &Out);
@ -615,13 +518,12 @@ namespace {
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunctionDecl(const Function *M); //for printing just the method
// declaration
void printFunctionArgument(const Argument *MA);
void printFunctionSignature(const Function *F);
void printFunctionDecl(const Function *F); // Print just the forward decl
void printFunctionArgument(const Argument *FA);
void printFunction(const Function *);
void outputFunction(const Function *, CLocalVars &);
void outputBasicBlock(const BasicBlock *);
};
/* END class CWriter */
@ -631,14 +533,12 @@ namespace {
class InstLocalVarsVisitor : public InstVisitor<InstLocalVarsVisitor> {
SlotCalculator& Table;
void handleTerminator(TerminatorInst *tI,int indx);
void handleTerminator(TerminatorInst *tI, int indx);
public:
CLocalVars CLV;
InstLocalVarsVisitor(SlotCalculator& table) : Table(table) {
}
InstLocalVarsVisitor(SlotCalculator& table) : Table(table) {}
void visitInstruction(Instruction *I) {
string tempostr;
@ -661,16 +561,10 @@ namespace {
}
void visitBranchInst(BranchInst *I) {
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
handleTerminator(tI, 0);
handleTerminator(tI, 1);
}
else {
handleTerminator(tI, 0);
}
handleTerminator(I, 0);
if (I->isConditional())
handleTerminator(I, 1);
}
};
@ -855,34 +749,31 @@ void CInstPrintVisitor::visitShl(ShiftInst *I) {
// neccesary because we use the instruction classes as opaque types...
//
void CInstPrintVisitor::visitReturnInst(ReturnInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "return ";
if (Operand)
CW.writeOperand(Operand,false, Out);
if (I->getNumOperands())
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
}
void CInstPrintVisitor::visitBranchInst(BranchInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
Out << "if (";
CW.writeOperand(I->getOperand(2),false, Out);
Out << ") {\n";
if (I->isConditional()) {
Out << " if (";
CW.writeOperand(I->getCondition(), false, Out);
Out << ")\n";
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand,false, Out);
Out << " goto ";
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
Out << "}" << "else {\n";
Out << " else\n";
printPhiFromNextBlock(tI,1);
Out << " goto ";
Out << " goto ";
CW.writeOperand(I->getOperand(1),false, Out);
Out << ";\n";
Out << "}\n";
} else {
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand, false, Out);
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
}
Out << "\n";
@ -1095,22 +986,33 @@ void CWriter::printModule(const Module *M) {
// printing stdlib inclusion
// Out << "#include <stdlib.h>\n";
// get declaration for alloca
Out << "/* Provide Declarations */\n"
<< "#include <alloca.h>\n"
// Provide a definition for null if one does not already exist.
<< "#ifndef NULL\n#define NULL 0\n#endif\n"
<< "typedef unsigned char bool;\n"
<< "\n\n/* Global Symbols */\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
Out << "\n\n/* Global Data */\n";
for_each(M->gbegin(), M->gend(),
bind_obj(this, &CWriter::printGlobal));
// First output all the declarations of the methods as C requires Functions
// First output all the declarations of the functions as C requires Functions
// be declared before they are used.
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunctionDecl));
//
Out << "\n\n/* Function Declarations */\n";
for_each(M->begin(), M->end(), bind_obj(this, &CWriter::printFunctionDecl));
// declaration of alloca
Out << "void *alloca(unsigned long size);\n";
// Output all of the methods...
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunction));
// Output all of the functions...
Out << "\n\n/* Function Bodies */\n";
for_each(M->begin(), M->end(), bind_obj(this, &CWriter::printFunction));
}
// prints the global constants
@ -1158,9 +1060,8 @@ void CWriter::printSymbolTable(const SymbolTable &ST) {
string tempostr;
string tempstr = "";
Out << "typedef ";
vector<const Type *> TypeStack;
tempostr = "llvm__" + I->first;
string TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames,
string TypeNameVar = calcTypeNameVar(Ty, TypeNames,
tempostr, tempstr);
Out << TypeNameVar << ";\n";
if (!isa<PointerType>(Ty) ||
@ -1203,61 +1104,44 @@ void CWriter::printConstant(const Constant *CPV) {
Out << "\n";
}
// printFunctionDecl - Print method declaration
// printFunctionDecl - Print function declaration
//
void CWriter::printFunctionDecl(const Function *M) {
if (M->hasInternalLinkage()) Out <<"static ";
void CWriter::printFunctionDecl(const Function *F) {
printFunctionSignature(F);
Out << ";\n";
}
void CWriter::printFunctionSignature(const Function *F) {
if (F->hasInternalLinkage()) Out << "static ";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
if (!M->isExternal()) {
// Print out the return type and name...
printType(M->getReturnType(), Out);
Out << " " << makeNameProper(M->getName()) << "(";
// Print out the return type and name...
printType(F->getReturnType(), Out);
Out << " " << makeNameProper(F->getName()) << "(";
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
if (!F->isExternal()) {
for_each(F->getArgumentList().begin(), F->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
FT->getParamTypes().begin(),
E = FT->getParamTypes().end(); I != E; ++I) {
if (I != FT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
}
}
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
if (FT->isVarArg()) {
if (FT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ");\n";
Out << ")";
}
void CWriter::printFunction(const Function *M) {
if (!M->isExternal()) {
// Process each of the basic blocks, gather information and call the
// output methods on the CLocalVars and Function* objects.
// gather local variable information for each basic block
InstLocalVarsVisitor ILV(Table);
ILV.visit((Function *)M);
// Spout out code.
outputFunction(M, ILV.CLV);
}
}
// printFunctionArgument - This member is called for every argument that
// is passed into the method. Simply print it out
@ -1284,67 +1168,42 @@ void CWriter::printFunctionArgument(const Argument *Arg) {
printTypeVar (Arg->getType(), tempostr, Out);
}
void CWriter::outputFunction(const Function *M, CLocalVars& CLV) {
// Currently we have a no-loop-structure implementation
// Seems like its not really necessary.
void CWriter::printFunction(const Function *F) {
if (F->isExternal()) return;
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
// Process each of the basic blocks, gather information and call the
// output methods on the CLocalVars and Function* objects.
// gather local variable information for each basic block
InstLocalVarsVisitor ILV(Table);
ILV.visit((Function *)F);
printFunctionSignature(F);
Out << " {\n";
// Loop over the symbol table, emitting all named constants...
if (F->hasSymbolTable())
printSymbolTable(*F->getSymbolTable());
if (!M->isExternal()) {
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
// print the local variables
// we assume that every local variable is alloca'ed in the C code.
std::map<const Type*, VarListType> &locals = ILV.CLV.LocalVars;
map<const Type*, VarListType>::iterator iter;
for (iter = locals.begin(); iter != locals.end(); ++iter) {
VarListType::iterator listiter;
for (listiter = iter->second.begin(); listiter != iter->second.end();
++listiter) {
Out << " ";
printTypeVar(iter->first, *listiter, Out);
Out << ";\n";
}
}
// print the basic blocks
for_each(F->begin(), F->end(), bind_obj(this, &CWriter::outputBasicBlock));
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")\n";
if (!M->isExternal()) {
Out << "{\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
// print the local variables
// we assume that every local variable is alloca'ed in the C code.
std::map<const Type*, VarListType> locals;
locals = CLV.LocalVars;
map<const Type*, VarListType>::iterator iter;
for (iter = locals.begin(); iter != locals.end(); iter++) {
VarListType::iterator listiter;
for (listiter = iter->second.begin(); listiter != iter->second.end();
listiter++) {
// printType(iter->first, Out);
// Out << " " << *listiter << ";\n";
printTypeVar(iter->first, *listiter, Out);
Out << ";\n";
}
}
// print the basic blocks
Function::const_iterator iterBB;
for (iterBB = M->begin(); iterBB != M->end(); ++iterBB)
outputBasicBlock(*iterBB);
Out << "}\n";
}
Out << "}\n";
}
void CWriter::outputBasicBlock(const BasicBlock* BB) {
@ -1384,19 +1243,31 @@ ostream& CWriter::printType(const Type *Ty, ostream &Out) {
void CWriter::writeOperand(const Value *Operand, bool PrintType,
ostream &Out, bool PrintName = true) {
if (PrintType){
string tempstr = "";
ostream &Out, bool PrintName = true) {
if (PrintType) {
Out << " ";
printType(Operand->getType(), Out);
}
vector<const Type *> TypeStack;
string MInfo = "";
string OperandType = calcTypeName(Operand->getType(), TypeStack, TypeNames,
&MInfo);
if (MInfo != "")
OperandType += ")" + MInfo;
WriteCOperandInternal(Out, Operand, PrintName, &Table, OperandType);
if (PrintName && Operand->hasName()) {
// If Operand has a name.
Out << "llvm__" << makeNameProper(Operand->getName()) << "_" <<
Operand->getType()->getUniqueID();
return;
}
else if (const Constant *CPV = dyn_cast<const Constant>(Operand)) {
if (isa<ConstantPointerNull>(CPV))
Out << "NULL";
else
Out << getConstStrValue(CPV);
}
else {
int Slot = Table.getValSlot(Operand);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_" << Operand->getType()->getUniqueID();
else if (PrintName)
Out << "<badref>";
}
}
@ -1404,7 +1275,6 @@ void CWriter::writeOperand(const Value *Operand, bool PrintType,
// External Interface declaration
//===----------------------------------------------------------------------===//
void WriteToC(const Module *C, ostream &Out) {
assert(C && "You can't write a null module!!");
SlotCalculator SlotTable(C, true);

View File

@ -1,10 +1,12 @@
//===-- Writer.cpp - Library for writing C files -----------------*- C++ -*--=//
//===-- Writer.cpp - Library for writing C files --------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/CWriter.h
// and CLocalVars.h
//
// TODO : Recursive types.
//
//===-----------------------------------------------------------------------==//
#include "llvm/Assembly/CWriter.h"
#include "CLocalVars.h"
#include "llvm/SlotCalculator.h"
@ -31,7 +33,9 @@ using std::map;
using std::vector;
using std::ostream;
/* Implementation of the CLocalVars methods */
//===-----------------------------------------------------------------------==//
//
// Implementation of the CLocalVars methods
// Appends a variable to the LocalVars map if it does not already exist
// Also check that the type exists on the map.
@ -43,8 +47,7 @@ void CLocalVars::addLocalVar(const Type *t, const string & var) {
}
}
/* Writer.cpp */
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar);
@ -139,8 +142,7 @@ static std::string getConstArrayStrValue(const Constant* CPV) {
if (isprint(C)) {
Result += C;
} else {
Result += '\\';
Result += 'x';
Result += "\\x";
Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
}
@ -187,7 +189,7 @@ static std::string getConstStrValue(const Constant* CPV) {
tempstr = getConstStructStrValue(CPV);
}
else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(CPV)) {
tempstr = utostr((long long unsigned int) CUI->getValue());
tempstr = utostr(CUI->getValue());
}
else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CPV)) {
tempstr = itostr(CSI->getValue());
@ -208,42 +210,11 @@ static std::string getConstStrValue(const Constant* CPV) {
}
// WriteCOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %0 not the
// whole instruction that generated it.
//
static void WriteCOperandInternal(ostream &Out, const Value *V,
bool PrintName, SlotCalculator *Table,
string &OperandType) {
int Slot;
if (PrintName && V->hasName()) {
// If V has a name.
Out << "llvm__" << makeNameProper(V->getName()) << "_" <<
(V->getType())->getUniqueID();
return;
}
else if (const Constant *CPV = dyn_cast<const Constant>(V)) {
if (isa<ConstantPointerNull>(CPV)) {
Out << "(" << OperandType << ")0";
}
else
Out << getConstStrValue(CPV);
}
else {
Slot = Table->getValSlot(V);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_" << V->getType()->getUniqueID();
else if (PrintName)
Out << "<badref>";
}
}
// Internal function
// Essentially pass the Type* variable, an empty typestack and this prints
// out the C type
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames,
string *FunctionInfo) {
static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
string &FunctionInfo) {
// Takin' care of the fact that boolean would be int in C
// and that ushort would be unsigned short etc.
@ -251,29 +222,19 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
// Base Case
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int";
break;
case Type::UByteTyID:
return "unsigned char";
break;
case Type::SByteTyID:
return "signed char";
break;
case Type::UShortTyID:
return "unsigned long long";
break;
case Type::ULongTyID:
return "unsigned long long";
break;
case Type::LongTyID:
return "signed long long";
break;
case Type::UIntTyID:
return "unsigned int";
break;
default :
return Ty->getDescription();
case Type::VoidTyID: return "void";
case Type::BoolTyID: return "bool";
case Type::UByteTyID: return "unsigned char";
case Type::SByteTyID: return "signed char";
case Type::UShortTyID: return "unsigned short";
case Type::ShortTyID: return "short";
case Type::UIntTyID: return "unsigned";
case Type::IntTyID: return "int";
case Type::ULongTyID: return "unsigned long long";
case Type::LongTyID: return "signed long long";
case Type::FloatTyID: return "float";
case Type::DoubleTyID: return "double";
default : assert(0 && "Unknown primitive type!");
}
// Check to see if the type is named.
@ -281,45 +242,32 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
if (I != TypeNames.end())
return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string MInfo = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
Result = calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += "(";
*FunctionInfo += " (";
FunctionInfo += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
*FunctionInfo += ", ";
FunctionInfo += ", ";
MInfo = "";
*FunctionInfo += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
FunctionInfo += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
*FunctionInfo += ", ";
*FunctionInfo += "...";
FunctionInfo += ", ";
FunctionInfo += "...";
}
*FunctionInfo += ")";
FunctionInfo += ")";
break;
}
case Type::StructTyID: {
@ -330,7 +278,7 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), tempstr);
Result += ";\n ";
}
@ -339,13 +287,13 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, &MInfo);
TypeNames, MInfo);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeName(ATy->getElementType(), TypeStack, TypeNames, &MInfo);
Result = calcTypeName(ATy->getElementType(), TypeNames, MInfo);
Result += "*";
break;
}
@ -354,7 +302,6 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
@ -364,32 +311,25 @@ static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
// This is different from calcTypeName because if you need to declare an array
// the size of the array would appear after the variable name itself
// For eg. int a[10];
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar) {
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int " + NameSoFar + VariableName;
break;
return "bool " + NameSoFar + VariableName;
case Type::UByteTyID:
return "unsigned char " + NameSoFar + VariableName;
break;
case Type::SByteTyID:
return "signed char " + NameSoFar + VariableName;
break;
case Type::UShortTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::ULongTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::LongTyID:
return "signed long long " + NameSoFar + VariableName;
break;
case Type::UIntTyID:
return "unsigned int " + NameSoFar + VariableName;
break;
return "unsigned " + NameSoFar + VariableName;
default :
return Ty->getDescription() + " " + NameSoFar + VariableName;
}
@ -399,16 +339,6 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
if (I != TypeNames.end())
return I->second + " " + NameSoFar + VariableName;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot) + " " + NameSoFar + VariableName;
// Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string tempstr = "";
@ -416,7 +346,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::FunctionTyID: {
string MInfo = "";
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result += calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
Result += calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += " " + NameSoFar + VariableName;
@ -427,7 +357,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
if (I != MTy->getParamTypes().begin())
Result += ", ";
MInfo = "";
Result += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
Result += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
@ -446,7 +376,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), "");
Result += ";\n ";
}
@ -457,7 +387,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::PointerTyID: {
Result = calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, tempstr,
TypeNames, tempstr,
"(*" + NameSoFar + VariableName + ")");
break;
}
@ -465,7 +395,7 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeNameVar(ATy->getElementType(), TypeStack, TypeNames,
Result = calcTypeNameVar(ATy->getElementType(), TypeNames,
tempstr, NameSoFar + VariableName + "[" +
itostr(NumElements) + "]");
break;
@ -475,7 +405,6 @@ static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
@ -487,31 +416,22 @@ static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int " << VariableName;
break;
return Out << "bool " << VariableName;
case Type::UByteTyID:
return Out << "unsigned char " << VariableName;
break;
case Type::SByteTyID:
return Out << "signed char " << VariableName;
break;
case Type::UShortTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::ULongTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::LongTyID:
return Out << "signed long long " << VariableName;
break;
case Type::UIntTyID:
return Out << "unsigned int " << VariableName;
break;
return Out << "unsigned " << VariableName;
default :
return Out << Ty->getDescription() << " " << VariableName;
}
@ -524,14 +444,9 @@ static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string TypeNameVar, tempstr = "";
TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames, VariableName,
tempstr);
TypeNameVar = calcTypeNameVar(Ty, TypeNames, VariableName, tempstr);
return Out << TypeNameVar;
// TODO: Check what happens to caching
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
}
// Internal guts of printing a type name
@ -540,32 +455,22 @@ static ostream &printTypeInt(ostream &Out, const Type *Ty,
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int";
break;
return Out << "bool";
case Type::UByteTyID:
return Out << "unsigned char";
break;
case Type::SByteTyID:
return Out << "signed char";
break;
case Type::UShortTyID:
return Out << "unsigned long long";
break;
return Out << "unsigned short";
case Type::ULongTyID:
return Out << "unsigned long long";
break;
case Type::LongTyID:
return Out << "signed long long";
break;
case Type::UIntTyID:
return Out << "unsigned int";
break;
return Out << "unsigned";
default :
return Out << Ty->getDescription();
}
@ -578,9 +483,8 @@ static ostream &printTypeInt(ostream &Out, const Type *Ty,
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string MInfo = "";
string TypeName = calcTypeName(Ty, TypeStack, TypeNames, &MInfo);
string MInfo;
string TypeName = calcTypeName(Ty, TypeNames, MInfo);
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
if (MInfo != "")
@ -600,10 +504,9 @@ namespace {
public:
inline CWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
}
inline void write(const Module *M) { printModule(M); }
inline void write(const Module *M) { printModule(M); }
ostream& printTypeVar(const Type *Ty, string VariableName, ostream &Out);
ostream& printType(const Type *Ty, ostream &Out);
@ -615,13 +518,12 @@ namespace {
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunctionDecl(const Function *M); //for printing just the method
// declaration
void printFunctionArgument(const Argument *MA);
void printFunctionSignature(const Function *F);
void printFunctionDecl(const Function *F); // Print just the forward decl
void printFunctionArgument(const Argument *FA);
void printFunction(const Function *);
void outputFunction(const Function *, CLocalVars &);
void outputBasicBlock(const BasicBlock *);
};
/* END class CWriter */
@ -631,14 +533,12 @@ namespace {
class InstLocalVarsVisitor : public InstVisitor<InstLocalVarsVisitor> {
SlotCalculator& Table;
void handleTerminator(TerminatorInst *tI,int indx);
void handleTerminator(TerminatorInst *tI, int indx);
public:
CLocalVars CLV;
InstLocalVarsVisitor(SlotCalculator& table) : Table(table) {
}
InstLocalVarsVisitor(SlotCalculator& table) : Table(table) {}
void visitInstruction(Instruction *I) {
string tempostr;
@ -661,16 +561,10 @@ namespace {
}
void visitBranchInst(BranchInst *I) {
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
handleTerminator(tI, 0);
handleTerminator(tI, 1);
}
else {
handleTerminator(tI, 0);
}
handleTerminator(I, 0);
if (I->isConditional())
handleTerminator(I, 1);
}
};
@ -855,34 +749,31 @@ void CInstPrintVisitor::visitShl(ShiftInst *I) {
// neccesary because we use the instruction classes as opaque types...
//
void CInstPrintVisitor::visitReturnInst(ReturnInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "return ";
if (Operand)
CW.writeOperand(Operand,false, Out);
if (I->getNumOperands())
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
}
void CInstPrintVisitor::visitBranchInst(BranchInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
Out << "if (";
CW.writeOperand(I->getOperand(2),false, Out);
Out << ") {\n";
if (I->isConditional()) {
Out << " if (";
CW.writeOperand(I->getCondition(), false, Out);
Out << ")\n";
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand,false, Out);
Out << " goto ";
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
Out << "}" << "else {\n";
Out << " else\n";
printPhiFromNextBlock(tI,1);
Out << " goto ";
Out << " goto ";
CW.writeOperand(I->getOperand(1),false, Out);
Out << ";\n";
Out << "}\n";
} else {
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand, false, Out);
CW.writeOperand(I->getOperand(0), false, Out);
Out << ";\n";
}
Out << "\n";
@ -1095,22 +986,33 @@ void CWriter::printModule(const Module *M) {
// printing stdlib inclusion
// Out << "#include <stdlib.h>\n";
// get declaration for alloca
Out << "/* Provide Declarations */\n"
<< "#include <alloca.h>\n"
// Provide a definition for null if one does not already exist.
<< "#ifndef NULL\n#define NULL 0\n#endif\n"
<< "typedef unsigned char bool;\n"
<< "\n\n/* Global Symbols */\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
Out << "\n\n/* Global Data */\n";
for_each(M->gbegin(), M->gend(),
bind_obj(this, &CWriter::printGlobal));
// First output all the declarations of the methods as C requires Functions
// First output all the declarations of the functions as C requires Functions
// be declared before they are used.
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunctionDecl));
//
Out << "\n\n/* Function Declarations */\n";
for_each(M->begin(), M->end(), bind_obj(this, &CWriter::printFunctionDecl));
// declaration of alloca
Out << "void *alloca(unsigned long size);\n";
// Output all of the methods...
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunction));
// Output all of the functions...
Out << "\n\n/* Function Bodies */\n";
for_each(M->begin(), M->end(), bind_obj(this, &CWriter::printFunction));
}
// prints the global constants
@ -1158,9 +1060,8 @@ void CWriter::printSymbolTable(const SymbolTable &ST) {
string tempostr;
string tempstr = "";
Out << "typedef ";
vector<const Type *> TypeStack;
tempostr = "llvm__" + I->first;
string TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames,
string TypeNameVar = calcTypeNameVar(Ty, TypeNames,
tempostr, tempstr);
Out << TypeNameVar << ";\n";
if (!isa<PointerType>(Ty) ||
@ -1203,61 +1104,44 @@ void CWriter::printConstant(const Constant *CPV) {
Out << "\n";
}
// printFunctionDecl - Print method declaration
// printFunctionDecl - Print function declaration
//
void CWriter::printFunctionDecl(const Function *M) {
if (M->hasInternalLinkage()) Out <<"static ";
void CWriter::printFunctionDecl(const Function *F) {
printFunctionSignature(F);
Out << ";\n";
}
void CWriter::printFunctionSignature(const Function *F) {
if (F->hasInternalLinkage()) Out << "static ";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
if (!M->isExternal()) {
// Print out the return type and name...
printType(M->getReturnType(), Out);
Out << " " << makeNameProper(M->getName()) << "(";
// Print out the return type and name...
printType(F->getReturnType(), Out);
Out << " " << makeNameProper(F->getName()) << "(";
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
if (!F->isExternal()) {
for_each(F->getArgumentList().begin(), F->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
FT->getParamTypes().begin(),
E = FT->getParamTypes().end(); I != E; ++I) {
if (I != FT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
}
}
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
if (FT->isVarArg()) {
if (FT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ");\n";
Out << ")";
}
void CWriter::printFunction(const Function *M) {
if (!M->isExternal()) {
// Process each of the basic blocks, gather information and call the
// output methods on the CLocalVars and Function* objects.
// gather local variable information for each basic block
InstLocalVarsVisitor ILV(Table);
ILV.visit((Function *)M);
// Spout out code.
outputFunction(M, ILV.CLV);
}
}
// printFunctionArgument - This member is called for every argument that
// is passed into the method. Simply print it out
@ -1284,67 +1168,42 @@ void CWriter::printFunctionArgument(const Argument *Arg) {
printTypeVar (Arg->getType(), tempostr, Out);
}
void CWriter::outputFunction(const Function *M, CLocalVars& CLV) {
// Currently we have a no-loop-structure implementation
// Seems like its not really necessary.
void CWriter::printFunction(const Function *F) {
if (F->isExternal()) return;
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
// Process each of the basic blocks, gather information and call the
// output methods on the CLocalVars and Function* objects.
// gather local variable information for each basic block
InstLocalVarsVisitor ILV(Table);
ILV.visit((Function *)F);
printFunctionSignature(F);
Out << " {\n";
// Loop over the symbol table, emitting all named constants...
if (F->hasSymbolTable())
printSymbolTable(*F->getSymbolTable());
if (!M->isExternal()) {
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
// print the local variables
// we assume that every local variable is alloca'ed in the C code.
std::map<const Type*, VarListType> &locals = ILV.CLV.LocalVars;
map<const Type*, VarListType>::iterator iter;
for (iter = locals.begin(); iter != locals.end(); ++iter) {
VarListType::iterator listiter;
for (listiter = iter->second.begin(); listiter != iter->second.end();
++listiter) {
Out << " ";
printTypeVar(iter->first, *listiter, Out);
Out << ";\n";
}
}
// print the basic blocks
for_each(F->begin(), F->end(), bind_obj(this, &CWriter::outputBasicBlock));
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")\n";
if (!M->isExternal()) {
Out << "{\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
// print the local variables
// we assume that every local variable is alloca'ed in the C code.
std::map<const Type*, VarListType> locals;
locals = CLV.LocalVars;
map<const Type*, VarListType>::iterator iter;
for (iter = locals.begin(); iter != locals.end(); iter++) {
VarListType::iterator listiter;
for (listiter = iter->second.begin(); listiter != iter->second.end();
listiter++) {
// printType(iter->first, Out);
// Out << " " << *listiter << ";\n";
printTypeVar(iter->first, *listiter, Out);
Out << ";\n";
}
}
// print the basic blocks
Function::const_iterator iterBB;
for (iterBB = M->begin(); iterBB != M->end(); ++iterBB)
outputBasicBlock(*iterBB);
Out << "}\n";
}
Out << "}\n";
}
void CWriter::outputBasicBlock(const BasicBlock* BB) {
@ -1384,19 +1243,31 @@ ostream& CWriter::printType(const Type *Ty, ostream &Out) {
void CWriter::writeOperand(const Value *Operand, bool PrintType,
ostream &Out, bool PrintName = true) {
if (PrintType){
string tempstr = "";
ostream &Out, bool PrintName = true) {
if (PrintType) {
Out << " ";
printType(Operand->getType(), Out);
}
vector<const Type *> TypeStack;
string MInfo = "";
string OperandType = calcTypeName(Operand->getType(), TypeStack, TypeNames,
&MInfo);
if (MInfo != "")
OperandType += ")" + MInfo;
WriteCOperandInternal(Out, Operand, PrintName, &Table, OperandType);
if (PrintName && Operand->hasName()) {
// If Operand has a name.
Out << "llvm__" << makeNameProper(Operand->getName()) << "_" <<
Operand->getType()->getUniqueID();
return;
}
else if (const Constant *CPV = dyn_cast<const Constant>(Operand)) {
if (isa<ConstantPointerNull>(CPV))
Out << "NULL";
else
Out << getConstStrValue(CPV);
}
else {
int Slot = Table.getValSlot(Operand);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_" << Operand->getType()->getUniqueID();
else if (PrintName)
Out << "<badref>";
}
}
@ -1404,7 +1275,6 @@ void CWriter::writeOperand(const Value *Operand, bool PrintType,
// External Interface declaration
//===----------------------------------------------------------------------===//
void WriteToC(const Module *C, ostream &Out) {
assert(C && "You can't write a null module!!");
SlotCalculator SlotTable(C, true);