Privatize the first of the value maps.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76634 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2009-07-21 20:13:12 +00:00
parent b3e7171926
commit 16e298f980
6 changed files with 330 additions and 50 deletions

View File

@ -264,10 +264,6 @@ protected:
return User::operator new(s, 0); return User::operator new(s, 0);
} }
public: public:
/// get() - static factory method for creating a null aggregate. It is
/// illegal to call this method with a non-aggregate type.
static ConstantAggregateZero *get(const Type *Ty);
/// isNullValue - Return true if this is the value that would be returned by /// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. /// getNullValue.
virtual bool isNullValue() const { return true; } virtual bool isNullValue() const { return true; }

View File

@ -272,6 +272,7 @@ public:
// Methods for erasing constants // Methods for erasing constants
void erase(MDString *M); void erase(MDString *M);
void erase(MDNode *M); void erase(MDNode *M);
void erase(ConstantAggregateZero *Z);
}; };
/// FOR BACKWARDS COMPATIBILITY - Returns a global context. /// FOR BACKWARDS COMPATIBILITY - Returns a global context.

View File

@ -1025,49 +1025,11 @@ public:
}; };
} }
//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = ConstantAggregateZero::get(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
static ManagedStatic<ValueMap<char, Type,
ConstantAggregateZero> > AggZeroConstants;
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
// Implicitly locked.
return AggZeroConstants->getOrCreate(Ty, 0);
}
/// destroyConstant - Remove the constant from the constant table... /// destroyConstant - Remove the constant from the constant table...
/// ///
void ConstantAggregateZero::destroyConstant() { void ConstantAggregateZero::destroyConstant() {
// Implicitly locked. // Implicitly locked.
AggZeroConstants->remove(this); getType()->getContext().erase(this);
destroyConstantImpl(); destroyConstantImpl();
} }
@ -1117,7 +1079,7 @@ Constant *ConstantArray::get(const ArrayType *Ty,
} }
} }
return ConstantAggregateZero::get(Ty); return Ty->getContext().getConstantAggregateZero(Ty);
} }
/// destroyConstant - Remove the constant from the constant table... /// destroyConstant - Remove the constant from the constant table...
@ -1218,7 +1180,7 @@ Constant *ConstantStruct::get(const StructType *Ty,
// Implicitly locked. // Implicitly locked.
return StructConstants->getOrCreate(Ty, V); return StructConstants->getOrCreate(Ty, V);
return ConstantAggregateZero::get(Ty); return Ty->getContext().getConstantAggregateZero(Ty);
} }
// destroyConstant - Remove the constant from the constant table... // destroyConstant - Remove the constant from the constant table...
@ -1276,7 +1238,7 @@ Constant *ConstantVector::get(const VectorType *Ty,
} }
if (isZero) if (isZero)
return ConstantAggregateZero::get(Ty); return Ty->getContext().getConstantAggregateZero(Ty);
if (isUndef) if (isUndef)
return UndefValue::get(Ty); return UndefValue::get(Ty);
@ -2236,7 +2198,8 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Constant *Replacement = 0; Constant *Replacement = 0;
if (isAllZeros) { if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType()); Replacement =
From->getType()->getContext().getConstantAggregateZero(getType());
} else { } else {
// Check to see if we have this array type already. // Check to see if we have this array type already.
sys::SmartScopedWriter<true> Writer(*ConstantsLock); sys::SmartScopedWriter<true> Writer(*ConstantsLock);
@ -2312,7 +2275,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Constant *Replacement = 0; Constant *Replacement = 0;
if (isAllZeros) { if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType()); Replacement = getType()->getContext().getConstantAggregateZero(getType());
} else { } else {
// Check to see if we have this array type already. // Check to see if we have this array type already.
sys::SmartScopedWriter<true> Writer(*ConstantsLock); sys::SmartScopedWriter<true> Writer(*ConstantsLock);

View File

@ -167,7 +167,7 @@ Constant* LLVMContext::getConstantStruct(Constant* const *Vals,
// ConstantAggregateZero accessors. // ConstantAggregateZero accessors.
ConstantAggregateZero* LLVMContext::getConstantAggregateZero(const Type* Ty) { ConstantAggregateZero* LLVMContext::getConstantAggregateZero(const Type* Ty) {
return ConstantAggregateZero::get(Ty); return pImpl->getConstantAggregateZero(Ty);
} }
@ -649,3 +649,7 @@ void LLVMContext::erase(MDString *M) {
void LLVMContext::erase(MDNode *M) { void LLVMContext::erase(MDNode *M) {
pImpl->erase(M); pImpl->erase(M);
} }
void LLVMContext::erase(ConstantAggregateZero *Z) {
pImpl->erase(Z);
}

View File

@ -19,6 +19,294 @@
#include "llvm/MDNode.h" #include "llvm/MDNode.h"
using namespace llvm; using namespace llvm;
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
namespace llvm {
template<typename T, typename Alloc>
struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
static unsigned uses(const std::vector<T, Alloc>& v) {
return v.size();
}
};
template<class ConstantClass, class TypeClass, class ValType>
struct VISIBILITY_HIDDEN ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct VISIBILITY_HIDDEN ConvertConstantType {
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
llvm_unreachable("This type cannot be converted!");
}
};
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
}
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey /*true for arrays and structs*/ >
class VISIBILITY_HIDDEN ContextValueMap : public AbstractTypeUser {
public:
typedef std::pair<const Type*, ValType> MapKey;
typedef std::map<MapKey, Constant *> MapTy;
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
/// AbstractTypeMap - Map for abstract type constants.
///
AbstractTypeMapTy AbstractTypeMap;
/// ValueMapLock - Mutex for this map.
sys::SmartMutex<true> ValueMapLock;
public:
// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator map_end() { return Map.end(); }
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
/// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
typename MapTy::iterator I) {
ConstantClass* Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry
// exists for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.find(Ty);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
MapKey Lookup(Ty, V);
ConstantClass* Result = 0;
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = static_cast<ConstantClass *>(I->second);
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
return Result;
}
void remove(ConstantClass *CP) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
// Now that we found the entry, make sure this isn't the entry that
// the AbstractTypeMap points to.
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
if (Ty->isAbstract()) {
assert(AbstractTypeMap.count(Ty) &&
"Abstract type not in AbstractTypeMap?");
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
if (ATMEntryIt == I) {
// Yes, we are removing the representative entry for this type.
// See if there are any other entries of the same type.
typename MapTy::iterator TmpIt = ATMEntryIt;
// First check the entry before this one...
if (TmpIt != Map.begin()) {
--TmpIt;
if (TmpIt->first.first != Ty) // Not the same type, move back...
++TmpIt;
}
// If we didn't find the same type, try to move forward...
if (TmpIt == ATMEntryIt) {
++TmpIt;
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
--TmpIt; // No entry afterwards with the same type
}
// If there is another entry in the map of the same abstract type,
// update the AbstractTypeMap entry now.
if (TmpIt != ATMEntryIt) {
ATMEntryIt = TmpIt;
} else {
// Otherwise, we are removing the last instance of this type
// from the table. Remove from the ATM, and from user list.
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
AbstractTypeMap.erase(Ty);
}
}
}
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
/// NOTE: This function is not locked. It is the responsibility of the
/// caller to enforce proper synchronization if using this method.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// If this constant is the representative element for its abstract type,
// update the AbstractTypeMap so that the representative element is I.
if (C->getType()->isAbstract()) {
typename AbstractTypeMapTy::iterator ATI =
AbstractTypeMap.find(C->getType());
assert(ATI != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
if (ATI->second == OldI)
ATI->second = I;
}
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<Type>(OldTy));
assert(I != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
// Convert a constant at a time until the last one is gone. The last one
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
// eliminated eventually.
do {
ConvertConstantType<ConstantClass,
TypeClass>::convert(
static_cast<ConstantClass *>(I->second->second),
cast<TypeClass>(NewTy));
I = AbstractTypeMap.find(cast<Type>(OldTy));
} while (I != AbstractTypeMap.end());
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
AbsTy->removeAbstractTypeUser(this);
}
void dump() const {
DOUT << "Constant.cpp: ValueMap\n";
}
};
LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
Context(C), TheTrueVal(0), TheFalseVal(0) {
AggZeroConstants = new ContextValueMap<char, Type, ConstantAggregateZero>();
}
LLVMContextImpl::~LLVMContextImpl() {
delete AggZeroConstants;
}
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to // operator== and operator!= to ensure that the DenseMap doesn't attempt to
@ -116,6 +404,14 @@ MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) {
return N; return N;
} }
ConstantAggregateZero*
LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
// Implicitly locked.
return AggZeroConstants->getOrCreate(Ty, 0);
}
// *** erase methods *** // *** erase methods ***
@ -128,3 +424,7 @@ void LLVMContextImpl::erase(MDNode *M) {
sys::SmartScopedWriter<true> Writer(ConstantsLock); sys::SmartScopedWriter<true> Writer(ConstantsLock);
MDNodeSet.RemoveNode(M); MDNodeSet.RemoveNode(M);
} }
void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
AggZeroConstants->remove(Z);
}

View File

@ -17,14 +17,24 @@
#include "llvm/LLVMContext.h" #include "llvm/LLVMContext.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h" #include "llvm/System/RWMutex.h"
#include "llvm/ADT/APFloat.h" #include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h" #include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringMap.h"
#include <map>
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ContextValueMap;
namespace llvm { namespace llvm {
template<class ValType>
struct ConstantTraits;
class ConstantInt; class ConstantInt;
class ConstantFP; class ConstantFP;
@ -101,6 +111,8 @@ class LLVMContextImpl {
FoldingSet<MDNode> MDNodeSet; FoldingSet<MDNode> MDNodeSet;
ContextValueMap<char, Type, ConstantAggregateZero> *AggZeroConstants;
LLVMContext &Context; LLVMContext &Context;
ConstantInt *TheTrueVal; ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal; ConstantInt *TheFalseVal;
@ -108,7 +120,8 @@ class LLVMContextImpl {
LLVMContextImpl(); LLVMContextImpl();
LLVMContextImpl(const LLVMContextImpl&); LLVMContextImpl(const LLVMContextImpl&);
public: public:
LLVMContextImpl(LLVMContext &C) : Context(C), TheTrueVal(0), TheFalseVal(0) {} LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
/// Return a ConstantInt with the specified value and an implied Type. The /// Return a ConstantInt with the specified value and an implied Type. The
/// type is the integer type that corresponds to the bit width of the value. /// type is the integer type that corresponds to the bit width of the value.
@ -120,6 +133,8 @@ public:
MDNode *getMDNode(Value*const* Vals, unsigned NumVals); MDNode *getMDNode(Value*const* Vals, unsigned NumVals);
ConstantAggregateZero *getConstantAggregateZero(const Type *Ty);
ConstantInt *getTrue() { ConstantInt *getTrue() {
if (TheTrueVal) if (TheTrueVal)
return TheTrueVal; return TheTrueVal;
@ -136,6 +151,7 @@ public:
void erase(MDString *M); void erase(MDString *M);
void erase(MDNode *M); void erase(MDNode *M);
void erase(ConstantAggregateZero *Z);
}; };
} }