Implement elimination of loads

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2620 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-05-14 05:02:40 +00:00
parent 017489cfa2
commit 18fb2a6682

View File

@ -20,16 +20,24 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/CFG.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");
namespace {
class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
set<Instruction*> WorkList;
DominatorSet *DomSetInfo;
ImmediateDominators *ImmDominator;
set<Instruction*> WorkList;
DominatorSet *DomSetInfo;
ImmediateDominators *ImmDominator;
// BBContainsStore - Contains a value that indicates whether a basic block
// has a store or call instruction in it. This map is demand populated, so
// not having an entry means that the basic block has not been scanned yet.
//
map<BasicBlock*, bool> BBContainsStore;
public:
const char *getPassName() const {
return "Global Common Subexpression Elimination";
@ -48,12 +56,27 @@ namespace {
bool visitShiftInst(ShiftInst *I) {
return visitBinaryOperator((Instruction*)I);
}
bool visitLoadInst(LoadInst *LI);
bool visitInstruction(Instruction *) { return false; }
private:
void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
void CommonSubExpressionFound(Instruction *I, Instruction *Other);
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with
// removing loads is that intervening stores might make otherwise identical
// load's yield different values. To ensure that this is not the case, we
// check that there are no intervening stores or calls between the
// instructions.
//
bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2);
// CheckForInvalidatingInst - Return true if BB or any of the predecessors
// of BB (until DestBB) contain a store (or other invalidating) instruction.
//
bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
set<BasicBlock*> &VisitedSet);
// This transformation requires dominator and immediate dominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
@ -96,6 +119,9 @@ bool GCSE::runOnFunction(Function *F) {
Changed |= visit(I);
}
// Clear out data structure so that next function starts fresh
BBContainsStore.clear();
// When the worklist is empty, return whether or not we changed anything...
return Changed;
}
@ -129,9 +155,9 @@ void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
// of them, and for fixing the worklist to be correct.
//
void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
// I has already been removed from the worklist, Other needs to be.
assert(I != Other && WorkList.count(I) == 0 && "I shouldn't be on worklist!");
assert(I != Other);
WorkList.erase(I);
WorkList.erase(Other); // Other may not actually be on the worklist anymore...
++NumInstRemoved; // Keep track of number of instructions eliminated
@ -253,6 +279,21 @@ bool GCSE::visitBinaryOperator(Instruction *I) {
return false;
}
// IdenticalComplexInst - Return true if the two instructions are the same, by
// using a brute force comparison.
//
static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) {
assert(I1->getOpcode() == I2->getOpcode());
// Equal if they are in the same function...
return I1->getParent()->getParent() == I2->getParent()->getParent() &&
// And return the same type...
I1->getType() == I2->getType() &&
// And have the same number of operands...
I1->getNumOperands() == I2->getNumOperands() &&
// And all of the operands are equal.
std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
}
bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) {
Value *Op = I->getOperand(0);
Function *F = I->getParent()->getParent();
@ -260,21 +301,138 @@ bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) {
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
// Check to see if this new binary operator is not I, but same operand...
if (Other != I && Other->getParent()->getParent() == F &&
Other->getType() == I->getType()) {
// Check to see that all operators past the 0th are the same...
unsigned i = 1, e = I->getNumOperands();
for (; i != e; ++i)
if (I->getOperand(i) != Other->getOperand(i)) break;
if (i == e) {
// These instructions are identical. Handle the situation.
CommonSubExpressionFound(I, Other);
return true; // One instruction eliminated!
}
// Check to see if this new getelementptr is not I, but same operand...
if (Other != I && IdenticalComplexInst(I, Other)) {
// These instructions are identical. Handle the situation.
CommonSubExpressionFound(I, Other);
return true; // One instruction eliminated!
}
return false;
}
bool GCSE::visitLoadInst(LoadInst *LI) {
Value *Op = LI->getOperand(0);
Function *F = LI->getParent()->getParent();
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
UI != UE; ++UI)
if (LoadInst *Other = dyn_cast<LoadInst>(*UI))
// Check to see if this new load is not LI, but has the same operands...
if (Other != LI && IdenticalComplexInst(LI, Other) &&
TryToRemoveALoad(LI, Other))
return true; // An instruction was eliminated!
return false;
}
static inline bool isInvalidatingInst(const Instruction *I) {
return I->getOpcode() == Instruction::Store ||
I->getOpcode() == Instruction::Call ||
I->getOpcode() == Instruction::Invoke;
}
// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing
// loads is that intervening stores might make otherwise identical load's yield
// different values. To ensure that this is not the case, we check that there
// are no intervening stores or calls between the instructions.
//
bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) {
// Figure out which load dominates the other one. If neither dominates the
// other we cannot eliminate one...
//
if (DomSetInfo->dominates(L2, L1))
std::swap(L1, L2); // Make L1 dominate L2
else if (!DomSetInfo->dominates(L1, L2))
return false; // Neither instruction dominates the other one...
BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();
// FIXME: This is incredibly painful with broken rep
BasicBlock::iterator L1I = std::find(BB1->begin(), BB1->end(), L1);
assert(L1I != BB1->end() && "Inst not in own parent?");
// L1 now dominates L2. Check to see if the intervening instructions between
// the two loads include a store or call...
//
if (BB1 == BB2) { // In same basic block?
// In this degenerate case, no checking of global basic blocks has to occur
// just check the instructions BETWEEN L1 & L2...
//
for (++L1I; *L1I != L2; ++L1I)
if (isInvalidatingInst(*L1I))
return false; // Cannot eliminate load
++NumLoadRemoved;
CommonSubExpressionFound(L1, L2);
return true;
} else {
// Make sure that there are no store instructions between L1 and the end of
// it's basic block...
//
for (++L1I; L1I != BB1->end(); ++L1I)
if (isInvalidatingInst(*L1I)) {
BBContainsStore[BB1] = true;
return false; // Cannot eliminate load
}
// Make sure that there are no store instructions between the start of BB2
// and the second load instruction...
//
for (BasicBlock::iterator II = BB2->begin(); *II != L2; ++II)
if (isInvalidatingInst(*II)) {
BBContainsStore[BB2] = true;
return false; // Cannot eliminate load
}
// Do a depth first traversal of the inverse CFG starting at L2's block,
// looking for L1's block. The inverse CFG is made up of the predecessor
// nodes of a block... so all of the edges in the graph are "backward".
//
set<BasicBlock*> VisitedSet;
for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, BB1, VisitedSet))
return false;
++NumLoadRemoved;
CommonSubExpressionFound(L1, L2);
return true;
}
return false;
}
// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
// (until DestBB) contain a store (or other invalidating) instruction.
//
bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
set<BasicBlock*> &VisitedSet) {
// Found the termination point!
if (BB == DestBB || VisitedSet.count(BB)) return false;
// Avoid infinite recursion!
VisitedSet.insert(BB);
// Have we already checked this block?
map<BasicBlock*, bool>::iterator MI = BBContainsStore.find(BB);
if (MI != BBContainsStore.end()) {
// If this block is known to contain a store, exit the recursion early...
if (MI->second) return true;
// Otherwise continue checking predecessors...
} else {
// We don't know if this basic block contains an invalidating instruction.
// Check now:
bool HasStore = std::find_if(BB->begin(), BB->end(),
isInvalidatingInst) != BB->end();
if ((BBContainsStore[BB] = HasStore)) // Update map
return true; // Exit recursion early...
}
// Check all of our predecessor blocks...
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (CheckForInvalidatingInst(*PI, DestBB, VisitedSet))
return true;
// None of our predecessor blocks contain a store, and we don't either!
return false;
}