More functionality, renamed API

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-07-21 19:07:19 +00:00
parent f98e88f745
commit 19f31f28d8
2 changed files with 160 additions and 87 deletions

View File

@ -13,48 +13,46 @@
#include <assert.h>
class Value;
class ConstPoolInt;
struct ExprAnalysisResult;
namespace analysis {
struct ExprType;
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
//
ExprAnalysisResult ClassifyExpression(Value *Expr);
ExprType ClassifyExpression(Value *Expr);
// ExprAnalysisResult - Represent an expression of the form CONST*VAR+CONST
// ExprType - Represent an expression of the form CONST*VAR+CONST
// or simpler. The expression form that yields the least information about the
// expression is just the Linear form with no offset.
//
struct ExprAnalysisResult {
struct ExprType {
enum ExpressionType {
Constant, // Expr is a simple constant, Offset is value
Linear, // Expr is linear expr, Value is Var+Offset
ScaledLinear, // Expr is scaled linear exp, Value is Scale*Var+Offset
} ExprType;
} ExprTy;
const ConstPoolInt *Offset; // Offset of expr, or null if 0
Value *Var; // Var referenced, if Linear or above (null if 0)
const ConstPoolInt *Scale; // Scale of var if ScaledLinear expr (null if 1)
inline ExprAnalysisResult(const ConstPoolInt *CPV = 0) {
inline ExprType(const ConstPoolInt *CPV = 0) {
Offset = CPV; Var = 0; Scale = 0;
ExprType = Constant;
ExprTy = Constant;
}
inline ExprAnalysisResult(Value *Val) {
inline ExprType(Value *Val) {
Var = Val; Offset = Scale = 0;
ExprType = Var ? Linear : Constant;
ExprTy = Var ? Linear : Constant;
}
inline ExprAnalysisResult(const ConstPoolInt *scale, Value *var,
const ConstPoolInt *offset) {
assert(!(Scale && !Var) && "Can't have scaled nonvariable!");
inline ExprType(const ConstPoolInt *scale, Value *var,
const ConstPoolInt *offset) {
Scale = scale; Var = var; Offset = offset;
ExprType = Scale ? ScaledLinear : (Var ? Linear : Constant);
ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
}
private:
friend ExprAnalysisResult ClassifyExpression(Value *);
inline ExprAnalysisResult operator+(const ConstPoolInt *Offset);
};
} // End namespace analysis
#endif

View File

@ -14,6 +14,36 @@
#include "llvm/BasicBlock.h"
using namespace opt; // Get all the constant handling stuff
using namespace analysis;
class DefVal {
const ConstPoolInt * const Val;
ConstantPool &CP;
const Type * const Ty;
protected:
inline DefVal(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: Val(val), CP(cp), Ty(ty) {}
public:
inline const Type *getType() const { return Ty; }
inline ConstantPool &getCP() const { return CP; }
inline const ConstPoolInt *getVal() const { return Val; }
inline operator const ConstPoolInt * () const { return Val; }
inline const ConstPoolInt *operator->() const { return Val; }
};
struct DefZero : public DefVal {
inline DefZero(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: DefVal(val, cp, ty) {}
inline DefZero(const ConstPoolInt *val)
: DefVal(val, (ConstantPool&)val->getParent()->getConstantPool(),
val->getType()) {}
};
struct DefOne : public DefVal {
inline DefOne(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: DefVal(val, cp, ty) {}
};
// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
// name. This method first checks to see if the desired constant is already in
@ -29,15 +59,16 @@ static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
return CPI;
}
static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
static ConstPoolInt *getUnsignedConstant(ConstantPool &CP, uint64_t V,
const Type *Ty) {
// FIXME: Lookup prexisting constant in table!
ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V);
CP.insert(CPUI);
return CPUI;
ConstPoolInt *CPI;
CPI = Ty->isSigned() ? new ConstPoolSInt(Ty, V) : new ConstPoolUInt(Ty, V);
CP.insert(CPI);
return CPI;
}
// Add - Helper function to make later code simpler. Basically it just adds
// the two constants together, inserts the result into the constant pool, and
// returns it. Of course life is not simple, and this is no exception. Factors
@ -50,29 +81,20 @@ static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
if (DefOne == false) { // Handle degenerate cases first...
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
if (Arg2 == 0) return Arg1;
} else { // These aren't degenerate... :(
if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy);
if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType());
if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType());
}
static const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne) {
assert(Arg1 && Arg2 && "No null arguments should exist now!");
// FIXME: Make types compatible!
assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 + *Arg2;
assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!");
assert(Result && Result->getType() == Arg1->getType() &&
"Couldn't perform addition!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equals(DefOne ? 1 : 0)) {
if (ResultI->equalsInt(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
@ -82,16 +104,28 @@ inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
return ResultI;
}
inline const ConstPoolInt *operator+(const DefZero &L, const DefZero &R) {
if (L == 0) return R;
if (R == 0) return L;
return Add(L.getCP(), L, R, false);
}
ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
if (NewOff == 0) return *this; // No change!
ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool();
return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff));
inline const ConstPoolInt *operator+(const DefOne &L, const DefOne &R) {
if (L == 0) {
if (R == 0)
return getIntegralConstant(L.getCP(), 2, L.getType());
else
return Add(L.getCP(), getIntegralConstant(L.getCP(), 1, L.getType()),
R, true);
} else if (R == 0) {
return Add(L.getCP(), L,
getIntegralConstant(L.getCP(), 1, L.getType()), true);
}
return Add(L.getCP(), L, R, true);
}
// Mult - Helper function to make later code simpler. Basically it just
// Mul - Helper function to make later code simpler. Basically it just
// multiplies the two constants together, inserts the result into the constant
// pool, and returns it. Of course life is not simple, and this is no
// exception. Factors that complicate matters:
@ -103,26 +137,20 @@ ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
if (DefOne == false) { // Handle degenerate cases first...
if (Arg1 == 0 || Arg2 == 0) return 0; // 0 * x == 0
} else { // These aren't degenerate... :(
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
if (Arg2 == 0) return Arg1;
}
inline const ConstPoolInt *Mul(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
assert(Arg1 && Arg2 && "No null arguments should exist now!");
// FIXME: Make types compatible!
assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 * *Arg2;
assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!");
assert(Result && Result->getType() == Arg1->getType() &&
"Couldn't perform mult!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equals(DefOne ? 1 : 0)) {
if (ResultI->equalsInt(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
@ -132,6 +160,20 @@ inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
return ResultI;
}
inline const ConstPoolInt *operator*(const DefZero &L, const DefZero &R) {
if (L == 0 || R == 0) return 0;
return Mul(L.getCP(), L, R, false);
}
inline const ConstPoolInt *operator*(const DefOne &L, const DefZero &R) {
if (R == 0) return getIntegralConstant(L.getCP(), 0, L.getType());
if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
return Mul(L.getCP(), L, R, false);
}
inline const ConstPoolInt *operator*(const DefZero &L, const DefOne &R) {
return R*L;
}
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
@ -139,7 +181,7 @@ inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
// Note that this analysis cannot get into infinite loops because it treats PHI
// nodes as being an unknown linear expression.
//
ExprAnalysisResult ClassifyExpression(Value *Expr) {
ExprType analysis::ClassifyExpression(Value *Expr) {
assert(Expr != 0 && "Can't classify a null expression!");
switch (Expr->getValueType()) {
case Value::InstructionVal: break; // Instruction... hmmm... investigate.
@ -152,56 +194,89 @@ ExprAnalysisResult ClassifyExpression(Value *Expr) {
ConstPoolVal *CPV = Expr->castConstantAsserting();
if (CPV->getType()->isIntegral()) { // It's an integral constant!
ConstPoolInt *CPI = (ConstPoolInt*)Expr;
return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr);
return ExprType(CPI->equalsInt(0) ? 0 : (ConstPoolInt*)Expr);
}
return Expr;
}
Instruction *I = Expr->castInstructionAsserting();
ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
const Type *Ty = I->getType();
switch (I->getOpcode()) { // Handle each instruction type seperately
case Instruction::Add: {
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
if (LeftTy.ExprType > RightTy.ExprType)
swap(LeftTy, RightTy); // Make left be simpler than right
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Left.ExprTy > Right.ExprTy)
swap(Left, Right); // Make left be simpler than right
switch (LeftTy.ExprType) {
case ExprAnalysisResult::Constant:
return RightTy + LeftTy.Offset;
case ExprAnalysisResult::Linear: // RHS side must be linear or scaled
case ExprAnalysisResult::ScaledLinear: // RHS must be scaled
if (LeftTy.Var != RightTy.Var) // Are they the same variables?
return ExprAnalysisResult(I); // if not, we don't know anything!
switch (Left.ExprTy) {
case ExprType::Constant:
return ExprType(Right.Scale, Right.Var,
DefZero(Right.Offset,CP,Ty) + DefZero(Left.Offset, CP,Ty));
case ExprType::Linear: // RHS side must be linear or scaled
case ExprType::ScaledLinear: // RHS must be scaled
if (Left.Var != Right.Var) // Are they the same variables?
return ExprType(I); // if not, we don't know anything!
const ConstPoolInt *NewScale = Add(CP, LeftTy.Scale, RightTy.Scale,true);
const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset);
return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset);
return ExprType(DefOne(Left.Scale ,CP,Ty) + DefOne(Right.Scale , CP,Ty),
Left.Var,
DefZero(Left.Offset,CP,Ty) + DefZero(Right.Offset, CP,Ty));
}
} // end case Instruction::Add
case Instruction::Shl: {
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
if (RightTy.ExprType != ExprAnalysisResult::Constant)
break; // TODO: Can get some info if it's (<unsigned> X + <offset>)
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
if (RightTy.Offset == 0) return LeftTy; // shl x, 0 = x
assert(RightTy.Offset->getType() == Type::UByteTy &&
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Right.ExprTy != ExprType::Constant) break;
ExprType Left(ClassifyExpression(I->getOperand(0)));
if (Right.Offset == 0) return Left; // shl x, 0 = x
assert(Right.Offset->getType() == Type::UByteTy &&
"Shift amount must always be a unsigned byte!");
uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue();
ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount);
uint64_t ShiftAmount = ((ConstPoolUInt*)Right.Offset)->getValue();
ConstPoolInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount, Ty);
return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true),
LeftTy.Var,
Mult(CP, LeftTy.Offset, Multiplier));
return ExprType(DefOne(Left.Scale, CP, Ty) * Multiplier,
Left.Var,
DefZero(Left.Offset, CP, Ty) * Multiplier);
} // end case Instruction::Shl
// TODO: Handle CAST, SUB, MULT (at least!)
case Instruction::Mul: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Left.ExprTy > Right.ExprTy)
swap(Left, Right); // Make left be simpler than right
if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
return I; // Quadratic eqn! :(
const ConstPoolInt *Offs = Left.Offset;
if (Offs == 0) return ExprType();
return ExprType(DefOne(Right.Scale, CP, Ty) * Offs,
Right.Var,
DefZero(Right.Offset, CP, Ty) * Offs);
} // end case Instruction::Mul
case Instruction::Cast: {
ExprType Src(ClassifyExpression(I->getOperand(0)));
if (Src.ExprTy != ExprType::Constant)
return I;
const ConstPoolInt *Offs = Src.Offset;
if (Offs == 0) return ExprType();
if (I->getType()->isPointerType())
return Offs; // Pointer types do not lose precision
assert(I->getType()->isIntegral() && "Can only handle integral types!");
const ConstPoolVal *CPV = ConstRules::get(*Offs)->castTo(Offs, I->getType());
if (!CPV) return I;
assert(CPV->getType()->isIntegral() && "Must have an integral type!");
return (ConstPoolInt*)CPV;
} // end case Instruction::Cast
// TODO: Handle SUB (at least!)
} // end switch
// Otherwise, I don't know anything about this value!
return ExprAnalysisResult(I);
return I;
}