mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
Add support for software expansion of 64-bit integer division instructions.
Patch by Dmitri Shtilman! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195116 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
0b843861c6
commit
1b3ab9199f
@ -7,10 +7,10 @@
|
|||||||
//
|
//
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
//
|
//
|
||||||
// This file contains an implementation of 32bit integer division for targets
|
// This file contains an implementation of 32bit and 64bit scalar integer
|
||||||
// that don't have native support. It's largely derived from compiler-rt's
|
// division for targets that don't have native support. It's largely derived
|
||||||
// implementation of __udivsi3, but hand-tuned for targets that prefer less
|
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
|
||||||
// control flow.
|
// but hand-tuned for targets that prefer less control flow.
|
||||||
//
|
//
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
@ -26,9 +26,8 @@ namespace llvm {
|
|||||||
/// Generate code to calculate the remainder of two integers, replacing Rem
|
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||||
/// with the generated code. This currently generates code using the udiv
|
/// with the generated code. This currently generates code using the udiv
|
||||||
/// expansion, but future work includes generating more specialized code,
|
/// expansion, but future work includes generating more specialized code,
|
||||||
/// e.g. when more information about the operands are known. Currently only
|
/// e.g. when more information about the operands are known. Implements both
|
||||||
/// implements 32bit scalar division (due to udiv's limitation), but future
|
/// 32bit and 64bit scalar division.
|
||||||
/// work is removing this limitation.
|
|
||||||
///
|
///
|
||||||
/// @brief Replace Rem with generated code.
|
/// @brief Replace Rem with generated code.
|
||||||
bool expandRemainder(BinaryOperator *Rem);
|
bool expandRemainder(BinaryOperator *Rem);
|
||||||
@ -36,27 +35,39 @@ namespace llvm {
|
|||||||
/// Generate code to divide two integers, replacing Div with the generated
|
/// Generate code to divide two integers, replacing Div with the generated
|
||||||
/// code. This currently generates code similarly to compiler-rt's
|
/// code. This currently generates code similarly to compiler-rt's
|
||||||
/// implementations, but future work includes generating more specialized code
|
/// implementations, but future work includes generating more specialized code
|
||||||
/// when more information about the operands are known. Currently only
|
/// when more information about the operands are known. Implements both
|
||||||
/// implements 32bit scalar division, but future work is removing this
|
/// 32bit and 64bit scalar division.
|
||||||
/// limitation.
|
|
||||||
///
|
///
|
||||||
/// @brief Replace Div with generated code.
|
/// @brief Replace Div with generated code.
|
||||||
bool expandDivision(BinaryOperator* Div);
|
bool expandDivision(BinaryOperator* Div);
|
||||||
|
|
||||||
/// Generate code to calculate the remainder of two integers, replacing Rem
|
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||||
/// with the generated code. Uses the above 32bit routine, therefore adequate
|
/// with the generated code. Uses ExpandReminder with a 32bit Rem which
|
||||||
/// for targets with little or no support for less than 32 bit arithmetic.
|
/// makes it useful for targets with little or no support for less than
|
||||||
|
/// 32 bit arithmetic.
|
||||||
///
|
///
|
||||||
/// @brief Replace Rem with generated code.
|
/// @brief Replace Rem with generated code.
|
||||||
bool expandRemainderUpTo32Bits(BinaryOperator *Rem);
|
bool expandRemainderUpTo32Bits(BinaryOperator *Rem);
|
||||||
|
|
||||||
|
/// Generate code to calculate the remainder of two integers, replacing Rem
|
||||||
|
/// with the generated code. Uses ExpandReminder with a 64bit Rem.
|
||||||
|
///
|
||||||
|
/// @brief Replace Rem with generated code.
|
||||||
|
bool expandRemainderUpTo64Bits(BinaryOperator *Rem);
|
||||||
|
|
||||||
/// Generate code to divide two integers, replacing Div with the generated
|
/// Generate code to divide two integers, replacing Div with the generated
|
||||||
/// code. Uses the above 32bit routine, therefore adequate for targets with
|
/// code. Uses ExpandDivision with a 32bit Div which makes it useful for
|
||||||
/// little or no support for less than 32 bit arithmetic.
|
/// targets with little or no support for less than 32 bit arithmetic.
|
||||||
///
|
///
|
||||||
/// @brief Replace Rem with generated code.
|
/// @brief Replace Rem with generated code.
|
||||||
bool expandDivisionUpTo32Bits(BinaryOperator *Div);
|
bool expandDivisionUpTo32Bits(BinaryOperator *Div);
|
||||||
|
|
||||||
|
/// Generate code to divide two integers, replacing Div with the generated
|
||||||
|
/// code. Uses ExpandDivision with a 64bit Div.
|
||||||
|
///
|
||||||
|
/// @brief Replace Rem with generated code.
|
||||||
|
bool expandDivisionUpTo64Bits(BinaryOperator *Div);
|
||||||
|
|
||||||
} // End llvm namespace
|
} // End llvm namespace
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -7,10 +7,10 @@
|
|||||||
//
|
//
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
//
|
//
|
||||||
// This file contains an implementation of 32bit scalar integer division for
|
// This file contains an implementation of 32bit and 64bit scalar integer
|
||||||
// targets that don't have native support. It's largely derived from
|
// division for targets that don't have native support. It's largely derived
|
||||||
// compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
|
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
|
||||||
// amount of control flow
|
// but hand-tuned for targets that prefer less control flow.
|
||||||
//
|
//
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
@ -20,6 +20,7 @@
|
|||||||
#include "llvm/IR/IRBuilder.h"
|
#include "llvm/IR/IRBuilder.h"
|
||||||
#include "llvm/IR/Instructions.h"
|
#include "llvm/IR/Instructions.h"
|
||||||
#include "llvm/IR/Intrinsics.h"
|
#include "llvm/IR/Intrinsics.h"
|
||||||
|
#include <utility>
|
||||||
|
|
||||||
using namespace llvm;
|
using namespace llvm;
|
||||||
|
|
||||||
@ -31,7 +32,18 @@ using namespace llvm;
|
|||||||
/// be expanded if the user wishes
|
/// be expanded if the user wishes
|
||||||
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
||||||
IRBuilder<> &Builder) {
|
IRBuilder<> &Builder) {
|
||||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
|
||||||
|
ConstantInt *Shift;
|
||||||
|
|
||||||
|
if (BitWidth == 64) {
|
||||||
|
Shift = Builder.getInt64(63);
|
||||||
|
} else {
|
||||||
|
assert(BitWidth == 32 && "Unexpected bit width");
|
||||||
|
Shift = Builder.getInt32(31);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Following instructions are generated for both i32 (shift 31) and
|
||||||
|
// i64 (shift 63).
|
||||||
|
|
||||||
// ; %dividend_sgn = ashr i32 %dividend, 31
|
// ; %dividend_sgn = ashr i32 %dividend, 31
|
||||||
// ; %divisor_sgn = ashr i32 %divisor, 31
|
// ; %divisor_sgn = ashr i32 %divisor, 31
|
||||||
@ -42,8 +54,8 @@ static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; %urem = urem i32 %dividend, %divisor
|
// ; %urem = urem i32 %dividend, %divisor
|
||||||
// ; %xored = xor i32 %urem, %dividend_sgn
|
// ; %xored = xor i32 %urem, %dividend_sgn
|
||||||
// ; %srem = sub i32 %xored, %dividend_sgn
|
// ; %srem = sub i32 %xored, %dividend_sgn
|
||||||
Value *DividendSign = Builder.CreateAShr(Dividend, ThirtyOne);
|
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
|
||||||
Value *DivisorSign = Builder.CreateAShr(Divisor, ThirtyOne);
|
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
|
||||||
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
|
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
|
||||||
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
|
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
|
||||||
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
|
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
|
||||||
@ -68,6 +80,8 @@ static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
|
|||||||
IRBuilder<> &Builder) {
|
IRBuilder<> &Builder) {
|
||||||
// Remainder = Dividend - Quotient*Divisor
|
// Remainder = Dividend - Quotient*Divisor
|
||||||
|
|
||||||
|
// Following instructions are generated for both i32 and i64
|
||||||
|
|
||||||
// ; %quotient = udiv i32 %dividend, %divisor
|
// ; %quotient = udiv i32 %dividend, %divisor
|
||||||
// ; %product = mul i32 %divisor, %quotient
|
// ; %product = mul i32 %divisor, %quotient
|
||||||
// ; %remainder = sub i32 %dividend, %product
|
// ; %remainder = sub i32 %dividend, %product
|
||||||
@ -88,9 +102,20 @@ static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
|
|||||||
/// present, i.e. not folded), ready to be expanded if the user wishes.
|
/// present, i.e. not folded), ready to be expanded if the user wishes.
|
||||||
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||||
IRBuilder<> &Builder) {
|
IRBuilder<> &Builder) {
|
||||||
// Implementation taken from compiler-rt's __divsi3
|
// Implementation taken from compiler-rt's __divsi3 and __divdi3
|
||||||
|
|
||||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
|
||||||
|
ConstantInt *Shift;
|
||||||
|
|
||||||
|
if (BitWidth == 64) {
|
||||||
|
Shift = Builder.getInt64(63);
|
||||||
|
} else {
|
||||||
|
assert(BitWidth == 32 && "Unexpected bit width");
|
||||||
|
Shift = Builder.getInt32(31);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Following instructions are generated for both i32 (shift 31) and
|
||||||
|
// i64 (shift 63).
|
||||||
|
|
||||||
// ; %tmp = ashr i32 %dividend, 31
|
// ; %tmp = ashr i32 %dividend, 31
|
||||||
// ; %tmp1 = ashr i32 %divisor, 31
|
// ; %tmp1 = ashr i32 %divisor, 31
|
||||||
@ -102,8 +127,8 @@ static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
|
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
|
||||||
// ; %tmp4 = xor i32 %q_mag, %q_sgn
|
// ; %tmp4 = xor i32 %q_mag, %q_sgn
|
||||||
// ; %q = sub i32 %tmp4, %q_sgn
|
// ; %q = sub i32 %tmp4, %q_sgn
|
||||||
Value *Tmp = Builder.CreateAShr(Dividend, ThirtyOne);
|
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
|
||||||
Value *Tmp1 = Builder.CreateAShr(Divisor, ThirtyOne);
|
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
|
||||||
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
|
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
|
||||||
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
|
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
|
||||||
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
|
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
|
||||||
@ -119,9 +144,9 @@ static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
return Q;
|
return Q;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generates code to divide two unsigned scalar 32-bit integers. Returns the
|
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
|
||||||
/// quotient, rounded towards 0. Builder's insert point should be pointing where
|
/// Returns the quotient, rounded towards 0. Builder's insert point should
|
||||||
/// the caller wants code generated, e.g. at the udiv instruction.
|
/// point where the caller wants code generated, e.g. at the udiv instruction.
|
||||||
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
||||||
IRBuilder<> &Builder) {
|
IRBuilder<> &Builder) {
|
||||||
// The basic algorithm can be found in the compiler-rt project's
|
// The basic algorithm can be found in the compiler-rt project's
|
||||||
@ -129,18 +154,33 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// that's been hand-tuned to lessen the amount of control flow involved.
|
// that's been hand-tuned to lessen the amount of control flow involved.
|
||||||
|
|
||||||
// Some helper values
|
// Some helper values
|
||||||
IntegerType *I32Ty = Builder.getInt32Ty();
|
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
|
||||||
|
unsigned BitWidth = DivTy->getBitWidth();
|
||||||
|
|
||||||
ConstantInt *Zero = Builder.getInt32(0);
|
ConstantInt *Zero;
|
||||||
ConstantInt *One = Builder.getInt32(1);
|
ConstantInt *One;
|
||||||
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
ConstantInt *NegOne;
|
||||||
ConstantInt *NegOne = ConstantInt::getSigned(I32Ty, -1);
|
ConstantInt *MSB;
|
||||||
ConstantInt *True = Builder.getTrue();
|
|
||||||
|
if (BitWidth == 64) {
|
||||||
|
Zero = Builder.getInt64(0);
|
||||||
|
One = Builder.getInt64(1);
|
||||||
|
NegOne = ConstantInt::getSigned(DivTy, -1);
|
||||||
|
MSB = Builder.getInt64(63);
|
||||||
|
} else {
|
||||||
|
assert(BitWidth == 32 && "Unexpected bit width");
|
||||||
|
Zero = Builder.getInt32(0);
|
||||||
|
One = Builder.getInt32(1);
|
||||||
|
NegOne = ConstantInt::getSigned(DivTy, -1);
|
||||||
|
MSB = Builder.getInt32(31);
|
||||||
|
}
|
||||||
|
|
||||||
|
ConstantInt *True = Builder.getTrue();
|
||||||
|
|
||||||
BasicBlock *IBB = Builder.GetInsertBlock();
|
BasicBlock *IBB = Builder.GetInsertBlock();
|
||||||
Function *F = IBB->getParent();
|
Function *F = IBB->getParent();
|
||||||
Function *CTLZi32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
|
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
|
||||||
I32Ty);
|
DivTy);
|
||||||
|
|
||||||
// Our CFG is going to look like:
|
// Our CFG is going to look like:
|
||||||
// +---------------------+
|
// +---------------------+
|
||||||
@ -190,6 +230,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// We'll be overwriting the terminator to insert our extra blocks
|
// We'll be overwriting the terminator to insert our extra blocks
|
||||||
SpecialCases->getTerminator()->eraseFromParent();
|
SpecialCases->getTerminator()->eraseFromParent();
|
||||||
|
|
||||||
|
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
|
||||||
|
|
||||||
// First off, check for special cases: dividend or divisor is zero, divisor
|
// First off, check for special cases: dividend or divisor is zero, divisor
|
||||||
// is greater than dividend, and divisor is 1.
|
// is greater than dividend, and divisor is 1.
|
||||||
// ; special-cases:
|
// ; special-cases:
|
||||||
@ -209,12 +251,12 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
|
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
|
||||||
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
|
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
|
||||||
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
|
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
|
||||||
Value *Tmp0 = Builder.CreateCall2(CTLZi32, Divisor, True);
|
Value *Tmp0 = Builder.CreateCall2(CTLZ, Divisor, True);
|
||||||
Value *Tmp1 = Builder.CreateCall2(CTLZi32, Dividend, True);
|
Value *Tmp1 = Builder.CreateCall2(CTLZ, Dividend, True);
|
||||||
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
|
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
|
||||||
Value *Ret0_4 = Builder.CreateICmpUGT(SR, ThirtyOne);
|
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
|
||||||
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
|
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
|
||||||
Value *RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
|
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
|
||||||
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
|
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
|
||||||
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
|
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
|
||||||
Builder.CreateCondBr(EarlyRet, End, BB1);
|
Builder.CreateCondBr(EarlyRet, End, BB1);
|
||||||
@ -227,7 +269,7 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; br i1 %skipLoop, label %loop-exit, label %preheader
|
// ; br i1 %skipLoop, label %loop-exit, label %preheader
|
||||||
Builder.SetInsertPoint(BB1);
|
Builder.SetInsertPoint(BB1);
|
||||||
Value *SR_1 = Builder.CreateAdd(SR, One);
|
Value *SR_1 = Builder.CreateAdd(SR, One);
|
||||||
Value *Tmp2 = Builder.CreateSub(ThirtyOne, SR);
|
Value *Tmp2 = Builder.CreateSub(MSB, SR);
|
||||||
Value *Q = Builder.CreateShl(Dividend, Tmp2);
|
Value *Q = Builder.CreateShl(Dividend, Tmp2);
|
||||||
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
|
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
|
||||||
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
|
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
|
||||||
@ -260,17 +302,17 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; %tmp12 = icmp eq i32 %sr_2, 0
|
// ; %tmp12 = icmp eq i32 %sr_2, 0
|
||||||
// ; br i1 %tmp12, label %loop-exit, label %do-while
|
// ; br i1 %tmp12, label %loop-exit, label %do-while
|
||||||
Builder.SetInsertPoint(DoWhile);
|
Builder.SetInsertPoint(DoWhile);
|
||||||
PHINode *Carry_1 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
|
||||||
PHINode *SR_3 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
|
||||||
PHINode *R_1 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
|
||||||
PHINode *Q_2 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
|
||||||
Value *Tmp5 = Builder.CreateShl(R_1, One);
|
Value *Tmp5 = Builder.CreateShl(R_1, One);
|
||||||
Value *Tmp6 = Builder.CreateLShr(Q_2, ThirtyOne);
|
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
|
||||||
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
|
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
|
||||||
Value *Tmp8 = Builder.CreateShl(Q_2, One);
|
Value *Tmp8 = Builder.CreateShl(Q_2, One);
|
||||||
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
|
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
|
||||||
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
|
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
|
||||||
Value *Tmp10 = Builder.CreateAShr(Tmp9, 31);
|
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
|
||||||
Value *Carry = Builder.CreateAnd(Tmp10, One);
|
Value *Carry = Builder.CreateAnd(Tmp10, One);
|
||||||
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
|
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
|
||||||
Value *R = Builder.CreateSub(Tmp7, Tmp11);
|
Value *R = Builder.CreateSub(Tmp7, Tmp11);
|
||||||
@ -285,8 +327,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; %q_4 = or i32 %carry_2, %tmp13
|
// ; %q_4 = or i32 %carry_2, %tmp13
|
||||||
// ; br label %end
|
// ; br label %end
|
||||||
Builder.SetInsertPoint(LoopExit);
|
Builder.SetInsertPoint(LoopExit);
|
||||||
PHINode *Carry_2 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
|
||||||
PHINode *Q_3 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
|
||||||
Value *Tmp13 = Builder.CreateShl(Q_3, One);
|
Value *Tmp13 = Builder.CreateShl(Q_3, One);
|
||||||
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
|
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
|
||||||
Builder.CreateBr(End);
|
Builder.CreateBr(End);
|
||||||
@ -295,7 +337,7 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
|
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
|
||||||
// ; ret i32 %q_5
|
// ; ret i32 %q_5
|
||||||
Builder.SetInsertPoint(End, End->begin());
|
Builder.SetInsertPoint(End, End->begin());
|
||||||
PHINode *Q_5 = Builder.CreatePHI(I32Ty, 2);
|
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
|
||||||
|
|
||||||
// Populate the Phis, since all values have now been created. Our Phis were:
|
// Populate the Phis, since all values have now been created. Our Phis were:
|
||||||
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
|
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
|
||||||
@ -326,9 +368,8 @@ static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|||||||
/// Generate code to calculate the remainder of two integers, replacing Rem with
|
/// Generate code to calculate the remainder of two integers, replacing Rem with
|
||||||
/// the generated code. This currently generates code using the udiv expansion,
|
/// the generated code. This currently generates code using the udiv expansion,
|
||||||
/// but future work includes generating more specialized code, e.g. when more
|
/// but future work includes generating more specialized code, e.g. when more
|
||||||
/// information about the operands are known. Currently only implements 32bit
|
/// information about the operands are known. Implements both 32bit and 64bit
|
||||||
/// scalar division (due to udiv's limitation), but future work is removing this
|
/// scalar division.
|
||||||
/// limitation.
|
|
||||||
///
|
///
|
||||||
/// @brief Replace Rem with generated code.
|
/// @brief Replace Rem with generated code.
|
||||||
bool llvm::expandRemainder(BinaryOperator *Rem) {
|
bool llvm::expandRemainder(BinaryOperator *Rem) {
|
||||||
@ -338,6 +379,15 @@ bool llvm::expandRemainder(BinaryOperator *Rem) {
|
|||||||
|
|
||||||
IRBuilder<> Builder(Rem);
|
IRBuilder<> Builder(Rem);
|
||||||
|
|
||||||
|
Type *RemTy = Rem->getType();
|
||||||
|
if (RemTy->isVectorTy())
|
||||||
|
llvm_unreachable("Div over vectors not supported");
|
||||||
|
|
||||||
|
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
|
||||||
|
|
||||||
|
if (RemTyBitWidth != 32 && RemTyBitWidth != 64)
|
||||||
|
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
|
||||||
|
|
||||||
// First prepare the sign if it's a signed remainder
|
// First prepare the sign if it's a signed remainder
|
||||||
if (Rem->getOpcode() == Instruction::SRem) {
|
if (Rem->getOpcode() == Instruction::SRem) {
|
||||||
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
|
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
|
||||||
@ -376,9 +426,8 @@ bool llvm::expandRemainder(BinaryOperator *Rem) {
|
|||||||
/// Generate code to divide two integers, replacing Div with the generated
|
/// Generate code to divide two integers, replacing Div with the generated
|
||||||
/// code. This currently generates code similarly to compiler-rt's
|
/// code. This currently generates code similarly to compiler-rt's
|
||||||
/// implementations, but future work includes generating more specialized code
|
/// implementations, but future work includes generating more specialized code
|
||||||
/// when more information about the operands are known. Currently only
|
/// when more information about the operands are known. Implements both
|
||||||
/// implements 32bit scalar division, but future work is removing this
|
/// 32bit and 64bit scalar division.
|
||||||
/// limitation.
|
|
||||||
///
|
///
|
||||||
/// @brief Replace Div with generated code.
|
/// @brief Replace Div with generated code.
|
||||||
bool llvm::expandDivision(BinaryOperator *Div) {
|
bool llvm::expandDivision(BinaryOperator *Div) {
|
||||||
@ -388,9 +437,15 @@ bool llvm::expandDivision(BinaryOperator *Div) {
|
|||||||
|
|
||||||
IRBuilder<> Builder(Div);
|
IRBuilder<> Builder(Div);
|
||||||
|
|
||||||
if (Div->getType()->isVectorTy())
|
Type *DivTy = Div->getType();
|
||||||
|
if (DivTy->isVectorTy())
|
||||||
llvm_unreachable("Div over vectors not supported");
|
llvm_unreachable("Div over vectors not supported");
|
||||||
|
|
||||||
|
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
|
||||||
|
|
||||||
|
if (DivTyBitWidth != 32 && DivTyBitWidth != 64)
|
||||||
|
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
|
||||||
|
|
||||||
// First prepare the sign if it's a signed division
|
// First prepare the sign if it's a signed division
|
||||||
if (Div->getOpcode() == Instruction::SDiv) {
|
if (Div->getOpcode() == Instruction::SDiv) {
|
||||||
// Lower the code to unsigned division, and reset Div to point to the udiv.
|
// Lower the code to unsigned division, and reset Div to point to the udiv.
|
||||||
@ -443,7 +498,7 @@ bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
|
|||||||
if (RemTyBitWidth == 32)
|
if (RemTyBitWidth == 32)
|
||||||
return expandRemainder(Rem);
|
return expandRemainder(Rem);
|
||||||
|
|
||||||
// If bitwidth smaller than 32 extend inputs, truncate output and proceed
|
// If bitwidth smaller than 32 extend inputs, extend output and proceed
|
||||||
// with 32 bit division.
|
// with 32 bit division.
|
||||||
IRBuilder<> Builder(Rem);
|
IRBuilder<> Builder(Rem);
|
||||||
|
|
||||||
@ -471,6 +526,55 @@ bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
|
|||||||
return expandRemainder(cast<BinaryOperator>(ExtRem));
|
return expandRemainder(cast<BinaryOperator>(ExtRem));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Generate code to compute the remainder of two integers of bitwidth up to
|
||||||
|
/// 64 bits. Uses the above routines and extends the inputs/truncates the
|
||||||
|
/// outputs to operate in 64 bits.
|
||||||
|
///
|
||||||
|
/// @brief Replace Rem with emulation code.
|
||||||
|
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
|
||||||
|
assert((Rem->getOpcode() == Instruction::SRem ||
|
||||||
|
Rem->getOpcode() == Instruction::URem) &&
|
||||||
|
"Trying to expand remainder from a non-remainder function");
|
||||||
|
|
||||||
|
Type *RemTy = Rem->getType();
|
||||||
|
if (RemTy->isVectorTy())
|
||||||
|
llvm_unreachable("Div over vectors not supported");
|
||||||
|
|
||||||
|
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
|
||||||
|
|
||||||
|
if (RemTyBitWidth > 64)
|
||||||
|
llvm_unreachable("Div of bitwidth greater than 64 not supported");
|
||||||
|
|
||||||
|
if (RemTyBitWidth == 64)
|
||||||
|
return expandRemainder(Rem);
|
||||||
|
|
||||||
|
// If bitwidth smaller than 64 extend inputs, extend output and proceed
|
||||||
|
// with 64 bit division.
|
||||||
|
IRBuilder<> Builder(Rem);
|
||||||
|
|
||||||
|
Value *ExtDividend;
|
||||||
|
Value *ExtDivisor;
|
||||||
|
Value *ExtRem;
|
||||||
|
Value *Trunc;
|
||||||
|
Type *Int64Ty = Builder.getInt64Ty();
|
||||||
|
|
||||||
|
if (Rem->getOpcode() == Instruction::SRem) {
|
||||||
|
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
|
||||||
|
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
|
||||||
|
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
|
||||||
|
} else {
|
||||||
|
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
|
||||||
|
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
|
||||||
|
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
|
||||||
|
}
|
||||||
|
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
|
||||||
|
|
||||||
|
Rem->replaceAllUsesWith(Trunc);
|
||||||
|
Rem->dropAllReferences();
|
||||||
|
Rem->eraseFromParent();
|
||||||
|
|
||||||
|
return expandRemainder(cast<BinaryOperator>(ExtRem));
|
||||||
|
}
|
||||||
|
|
||||||
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
|
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
|
||||||
/// above routines and extends the inputs/truncates the outputs to operate
|
/// above routines and extends the inputs/truncates the outputs to operate
|
||||||
@ -495,7 +599,7 @@ bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
|
|||||||
if (DivTyBitWidth == 32)
|
if (DivTyBitWidth == 32)
|
||||||
return expandDivision(Div);
|
return expandDivision(Div);
|
||||||
|
|
||||||
// If bitwidth smaller than 32 extend inputs, truncate output and proceed
|
// If bitwidth smaller than 32 extend inputs, extend output and proceed
|
||||||
// with 32 bit division.
|
// with 32 bit division.
|
||||||
IRBuilder<> Builder(Div);
|
IRBuilder<> Builder(Div);
|
||||||
|
|
||||||
@ -522,3 +626,53 @@ bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
|
|||||||
|
|
||||||
return expandDivision(cast<BinaryOperator>(ExtDiv));
|
return expandDivision(cast<BinaryOperator>(ExtDiv));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
|
||||||
|
/// above routines and extends the inputs/truncates the outputs to operate
|
||||||
|
/// in 64 bits.
|
||||||
|
///
|
||||||
|
/// @brief Replace Div with emulation code.
|
||||||
|
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
|
||||||
|
assert((Div->getOpcode() == Instruction::SDiv ||
|
||||||
|
Div->getOpcode() == Instruction::UDiv) &&
|
||||||
|
"Trying to expand division from a non-division function");
|
||||||
|
|
||||||
|
Type *DivTy = Div->getType();
|
||||||
|
if (DivTy->isVectorTy())
|
||||||
|
llvm_unreachable("Div over vectors not supported");
|
||||||
|
|
||||||
|
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
|
||||||
|
|
||||||
|
if (DivTyBitWidth > 64)
|
||||||
|
llvm_unreachable("Div of bitwidth greater than 64 not supported");
|
||||||
|
|
||||||
|
if (DivTyBitWidth == 64)
|
||||||
|
return expandDivision(Div);
|
||||||
|
|
||||||
|
// If bitwidth smaller than 64 extend inputs, extend output and proceed
|
||||||
|
// with 64 bit division.
|
||||||
|
IRBuilder<> Builder(Div);
|
||||||
|
|
||||||
|
Value *ExtDividend;
|
||||||
|
Value *ExtDivisor;
|
||||||
|
Value *ExtDiv;
|
||||||
|
Value *Trunc;
|
||||||
|
Type *Int64Ty = Builder.getInt64Ty();
|
||||||
|
|
||||||
|
if (Div->getOpcode() == Instruction::SDiv) {
|
||||||
|
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
|
||||||
|
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
|
||||||
|
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
|
||||||
|
} else {
|
||||||
|
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
|
||||||
|
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
|
||||||
|
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
|
||||||
|
}
|
||||||
|
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
|
||||||
|
|
||||||
|
Div->replaceAllUsesWith(Trunc);
|
||||||
|
Div->dropAllReferences();
|
||||||
|
Div->eraseFromParent();
|
||||||
|
|
||||||
|
return expandDivision(cast<BinaryOperator>(ExtDiv));
|
||||||
|
}
|
||||||
|
@ -19,6 +19,7 @@ using namespace llvm;
|
|||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
|
|
||||||
TEST(IntegerDivision, SDiv) {
|
TEST(IntegerDivision, SDiv) {
|
||||||
LLVMContext &C(getGlobalContext());
|
LLVMContext &C(getGlobalContext());
|
||||||
Module M("test division", C);
|
Module M("test division", C);
|
||||||
@ -139,4 +140,125 @@ TEST(IntegerDivision, URem) {
|
|||||||
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
TEST(IntegerDivision, SDiv64) {
|
||||||
|
LLVMContext &C(getGlobalContext());
|
||||||
|
Module M("test division", C);
|
||||||
|
IRBuilder<> Builder(C);
|
||||||
|
|
||||||
|
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||||
|
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||||
|
ArgTys, false),
|
||||||
|
GlobalValue::ExternalLinkage, "F", &M);
|
||||||
|
assert(F->getArgumentList().size() == 2);
|
||||||
|
|
||||||
|
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||||
|
Builder.SetInsertPoint(BB);
|
||||||
|
|
||||||
|
Function::arg_iterator AI = F->arg_begin();
|
||||||
|
Value *A = AI++;
|
||||||
|
Value *B = AI++;
|
||||||
|
|
||||||
|
Value *Div = Builder.CreateSDiv(A, B);
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::SDiv);
|
||||||
|
|
||||||
|
Value *Ret = Builder.CreateRet(Div);
|
||||||
|
|
||||||
|
expandDivision(cast<BinaryOperator>(Div));
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::AShr);
|
||||||
|
|
||||||
|
Instruction* Quotient = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||||
|
EXPECT_TRUE(Quotient && Quotient->getOpcode() == Instruction::Sub);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(IntegerDivision, UDiv64) {
|
||||||
|
LLVMContext &C(getGlobalContext());
|
||||||
|
Module M("test division", C);
|
||||||
|
IRBuilder<> Builder(C);
|
||||||
|
|
||||||
|
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||||
|
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||||
|
ArgTys, false),
|
||||||
|
GlobalValue::ExternalLinkage, "F", &M);
|
||||||
|
assert(F->getArgumentList().size() == 2);
|
||||||
|
|
||||||
|
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||||
|
Builder.SetInsertPoint(BB);
|
||||||
|
|
||||||
|
Function::arg_iterator AI = F->arg_begin();
|
||||||
|
Value *A = AI++;
|
||||||
|
Value *B = AI++;
|
||||||
|
|
||||||
|
Value *Div = Builder.CreateUDiv(A, B);
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::UDiv);
|
||||||
|
|
||||||
|
Value *Ret = Builder.CreateRet(Div);
|
||||||
|
|
||||||
|
expandDivision(cast<BinaryOperator>(Div));
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::ICmp);
|
||||||
|
|
||||||
|
Instruction* Quotient = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||||
|
EXPECT_TRUE(Quotient && Quotient->getOpcode() == Instruction::PHI);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(IntegerDivision, SRem64) {
|
||||||
|
LLVMContext &C(getGlobalContext());
|
||||||
|
Module M("test remainder", C);
|
||||||
|
IRBuilder<> Builder(C);
|
||||||
|
|
||||||
|
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||||
|
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||||
|
ArgTys, false),
|
||||||
|
GlobalValue::ExternalLinkage, "F", &M);
|
||||||
|
assert(F->getArgumentList().size() == 2);
|
||||||
|
|
||||||
|
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||||
|
Builder.SetInsertPoint(BB);
|
||||||
|
|
||||||
|
Function::arg_iterator AI = F->arg_begin();
|
||||||
|
Value *A = AI++;
|
||||||
|
Value *B = AI++;
|
||||||
|
|
||||||
|
Value *Rem = Builder.CreateSRem(A, B);
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::SRem);
|
||||||
|
|
||||||
|
Value *Ret = Builder.CreateRet(Rem);
|
||||||
|
|
||||||
|
expandRemainder(cast<BinaryOperator>(Rem));
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::AShr);
|
||||||
|
|
||||||
|
Instruction* Remainder = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||||
|
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(IntegerDivision, URem64) {
|
||||||
|
LLVMContext &C(getGlobalContext());
|
||||||
|
Module M("test remainder", C);
|
||||||
|
IRBuilder<> Builder(C);
|
||||||
|
|
||||||
|
SmallVector<Type*, 2> ArgTys(2, Builder.getInt64Ty());
|
||||||
|
Function *F = Function::Create(FunctionType::get(Builder.getInt64Ty(),
|
||||||
|
ArgTys, false),
|
||||||
|
GlobalValue::ExternalLinkage, "F", &M);
|
||||||
|
assert(F->getArgumentList().size() == 2);
|
||||||
|
|
||||||
|
BasicBlock *BB = BasicBlock::Create(C, "", F);
|
||||||
|
Builder.SetInsertPoint(BB);
|
||||||
|
|
||||||
|
Function::arg_iterator AI = F->arg_begin();
|
||||||
|
Value *A = AI++;
|
||||||
|
Value *B = AI++;
|
||||||
|
|
||||||
|
Value *Rem = Builder.CreateURem(A, B);
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::URem);
|
||||||
|
|
||||||
|
Value *Ret = Builder.CreateRet(Rem);
|
||||||
|
|
||||||
|
expandRemainder(cast<BinaryOperator>(Rem));
|
||||||
|
EXPECT_TRUE(BB->front().getOpcode() == Instruction::ICmp);
|
||||||
|
|
||||||
|
Instruction* Remainder = dyn_cast<Instruction>(cast<User>(Ret)->getOperand(0));
|
||||||
|
EXPECT_TRUE(Remainder && Remainder->getOpcode() == Instruction::Sub);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user