Revision to Atomics guide, per Chris's comments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137386 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eli Friedman 2011-08-11 23:44:25 +00:00
parent 30039de2e9
commit 1bf4ad4870

View File

@ -15,8 +15,8 @@
<ol>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#loadstore">Load and store</a></li>
<li><a href="#ordering">Atomic orderings</a></li>
<li><a href="#otherinst">Other atomic instructions</a></li>
<li><a href="#ordering">Atomic orderings</a></li>
<li><a href="#iropt">Atomics and IR optimization</a></li>
<li><a href="#codegen">Atomics and Codegen</a></li>
</ol>
@ -43,14 +43,27 @@ instructions has been clarified in the IR.</p>
<p>The atomic instructions are designed specifically to provide readable IR and
optimized code generation for the following:</p>
<ul>
<li>The new C++0x <code>&lt;atomic&gt;</code> header.</li>
<li>The new C++0x <code>&lt;atomic&gt;</code> header.
(<a href="http://www.open-std.org/jtc1/sc22/wg21/">C++0x draft available here</a>.)
(<a href="http://www.open-std.org/jtc1/sc22/wg14/">C1x draft available here</a>)</li>
<li>Proper semantics for Java-style memory, for both <code>volatile</code> and
regular shared variables.</li>
<li>gcc-compatible <code>__sync_*</code> builtins.</li>
regular shared variables.
(<a href="http://java.sun.com/docs/books/jls/third_edition/html/memory.html">Java Specification</a>)</li>
<li>gcc-compatible <code>__sync_*</code> builtins.
(<a href="http://gcc.gnu.org/onlinedocs/gcc/Atomic-Builtins.html">Description</a>)</li>
<li>Other scenarios with atomic semantics, including <code>static</code>
variables with non-trivial constructors in C++.</li>
</ul>
<p>Atomic and volatile in the IR are orthogonal; "volatile" is the C/C++
volatile, which ensures that every volatile load and store happens and is
performed in the stated order. A couple examples: if a
SequentiallyConsistent store is immediately followed by another
SequentiallyConsistent store to the same address, the first store can
be erased. This transformation is not allowed for a pair of volatile
stores. On the other hand, a non-volatile non-atomic load can be moved
across a volatile load freely, but not an Acquire load.</p>
<p>This document is intended to provide a guide to anyone either writing a
frontend for LLVM or working on optimization passes for LLVM with a guide
for how to deal with instructions with special semantics in the presence of
@ -78,91 +91,22 @@ instructions has been clarified in the IR.</p>
in general.)</p>
<p>From the optimizer's point of view, the rule is that if there
are not any instructions with atomic ordering involved, concurrency does not
matter, with one exception: if a variable might be visible to another
are not any instructions with atomic ordering involved, concurrency does
not matter, with one exception: if a variable might be visible to another
thread or signal handler, a store cannot be inserted along a path where it
might not execute otherwise. Note that speculative loads are allowed;
a load which is part of a race returns <code>undef</code>, but is not
undefined behavior.</p>
might not execute otherwise. For example, suppose LICM wants to take all the
loads and stores in a loop to and from a particular address and promote them
to registers. LICM is not allowed to insert an unconditional store after
the loop with the computed value unless a store unconditionally executes
within the loop. Note that speculative loads are allowed; a load which
is part of a race returns <code>undef</code>, but does not have undefined
behavior.</p>
<p>For cases where simple loads and stores are not sufficient, LLVM provides
atomic loads and stores with varying levels of guarantees.</p>
</div>
<!-- *********************************************************************** -->
<h2>
<a name="ordering">Atomic orderings</a>
</h2>
<!-- *********************************************************************** -->
<div>
<p>In order to achieve a balance between performance and necessary guarantees,
there are six levels of atomicity. They are listed in order of strength;
each level includes all the guarantees of the previous level except for
Acquire/Release.</p>
<p>Unordered is the lowest level of atomicity. It essentially guarantees that
races produce somewhat sane results instead of having undefined behavior.
This is intended to match the Java memory model for shared variables. It
cannot be used for synchronization, but is useful for Java and other
"safe" languages which need to guarantee that the generated code never
exhibits undefined behavior. Note that this guarantee is cheap on common
platforms for loads of a native width, but can be expensive or unavailable
for wider loads, like a 64-bit load on ARM. (A frontend for a "safe"
language would normally split a 64-bit load on ARM into two 32-bit
unordered loads.) In terms of the optimizer, this prohibits any
transformation that transforms a single load into multiple loads,
transforms a store into multiple stores, narrows a store, or stores a
value which would not be stored otherwise. Some examples of unsafe
optimizations are narrowing an assignment into a bitfield, rematerializing
a load, and turning loads and stores into a memcpy call. Reordering
unordered operations is safe, though, and optimizers should take
advantage of that because unordered operations are common in
languages that need them.</p>
<p>Monotonic is the weakest level of atomicity that can be used in
synchronization primitives, although it does not provide any general
synchronization. It essentially guarantees that if you take all the
operations affecting a specific address, a consistent ordering exists.
This corresponds to the C++0x/C1x <code>memory_order_relaxed</code>; see
those standards for the exact definition. If you are writing a frontend, do
not use the low-level synchronization primitives unless you are compiling
a language which requires it or are sure a given pattern is correct. In
terms of the optimizer, this can be treated as a read+write on the relevant
memory location (and alias analysis will take advantage of that). In
addition, it is legal to reorder non-atomic and Unordered loads around
Monotonic loads. CSE/DSE and a few other optimizations are allowed, but
Monotonic operations are unlikely to be used in ways which would make
those optimizations useful.</p>
<p>Acquire provides a barrier of the sort necessary to acquire a lock to access
other memory with normal loads and stores. This corresponds to the
C++0x/C1x <code>memory_order_acquire</code>. It should also be used for
C++0x/C1x <code>memory_order_consume</code>. This is a low-level
synchronization primitive. In general, optimizers should treat this like
a nothrow call.</p>
<p>Release is similar to Acquire, but with a barrier of the sort necessary to
release a lock. This corresponds to the C++0x/C1x
<code>memory_order_release</code>. In general, optimizers should treat this
like a nothrow call.</p>
<p>AcquireRelease (<code>acq_rel</code> in IR) provides both an Acquire and a Release barrier.
This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>. In general,
optimizers should treat this like a nothrow call.</p>
<p>SequentiallyConsistent (<code>seq_cst</code> in IR) provides Acquire and/or
Release semantics, and in addition guarantees a total ordering exists with
all other SequentiallyConsistent operations. This corresponds to the
C++0x/C1x <code>memory_order_seq_cst</code>, and Java volatile. The intent
of this ordering level is to provide a programming model which is relatively
easy to understand. In general, optimizers should treat this like a
nothrow call.</p>
</div>
<!-- *********************************************************************** -->
<h2>
<a name="otherinst">Other atomic instructions</a>
@ -189,6 +133,228 @@ instructions has been clarified in the IR.</p>
</div>
<!-- *********************************************************************** -->
<h2>
<a name="ordering">Atomic orderings</a>
</h2>
<!-- *********************************************************************** -->
<div>
<p>In order to achieve a balance between performance and necessary guarantees,
there are six levels of atomicity. They are listed in order of strength;
each level includes all the guarantees of the previous level except for
Acquire/Release.</p>
<!-- ======================================================================= -->
<h3>
<a name="o_unordered">Unordered</a>
</h3>
<div>
<p>Unordered is the lowest level of atomicity. It essentially guarantees that
races produce somewhat sane results instead of having undefined behavior.
It also guarantees the operation to be lock-free, so it do not depend on
the data being part of a special atomic structure or depend on a separate
per-process global lock. Note that code generation will fail for
unsupported atomic operations; if you need such an operation, use explicit
locking.</p>
<dl>
<dt>Relevant standard</dt>
<dd>This is intended to match the Java memory model for shared
variables.</dd>
<dt>Notes for frontends</dt>
<dd>This cannot be used for synchronization, but is useful for Java and
other "safe" languages which need to guarantee that the generated
code never exhibits undefined behavior. Note that this guarantee
is cheap on common platforms for loads of a native width, but can
be expensive or unavailable for wider loads, like a 64-bit store
on ARM. (A frontend for Java or other "safe" languages would normally
split a 64-bit store on ARM into two 32-bit unordered stores.)
<dt>Notes for optimizers</dt>
<dd>In terms of the optimizer, this prohibits any transformation that
transforms a single load into multiple loads, transforms a store
into multiple stores, narrows a store, or stores a value which
would not be stored otherwise. Some examples of unsafe optimizations
are narrowing an assignment into a bitfield, rematerializing
a load, and turning loads and stores into a memcpy call. Reordering
unordered operations is safe, though, and optimizers should take
advantage of that because unordered operations are common in
languages that need them.</dd>
<dt>Notes for code generation</dt>
<dd>These operations are required to be atomic in the sense that if you
use unordered loads and unordered stores, a load cannot see a value
which was never stored. A normal load or store instruction is usually
sufficient, but note that an unordered load or store cannot
be split into multiple instructions (or an instruction which
does multiple memory operations, like <code>LDRD</code> on ARM).</dd>
</dl>
</div>
<!-- ======================================================================= -->
<h3>
<a name="o_monotonic">Monotonic</a>
</h3>
<div>
<p>Monotonic is the weakest level of atomicity that can be used in
synchronization primitives, although it does not provide any general
synchronization. It essentially guarantees that if you take all the
operations affecting a specific address, a consistent ordering exists.
<dl>
<dt>Relevant standard</dt>
<dd>This corresponds to the C++0x/C1x <code>memory_order_relaxed</code>;
see those standards for the exact definition.
<dt>Notes for frontends</dt>
<dd>If you are writing a frontend which uses this directly, use with caution.
The guarantees in terms of synchronization are very weak, so make
sure these are only used in a pattern which you know is correct.
Generally, these would either be used for atomic operations which
do not protect other memory (like an atomic counter), or along with
a <code>fence</code>.</dd>
<dt>Notes for optimizers</dt>
<dd>In terms of the optimizer, this can be treated as a read+write on the
relevant memory location (and alias analysis will take advantage of
that). In addition, it is legal to reorder non-atomic and Unordered
loads around Monotonic loads. CSE/DSE and a few other optimizations
are allowed, but Monotonic operations are unlikely to be used in ways
which would make those optimizations useful.</dd>
<dt>Notes for code generation</dt>
<dd>Code generation is essentially the same as that for unordered for loads
and stores. No fences is required. <code>cmpxchg</code> and
<code>atomicrmw</code> are required to appear as a single operation.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<h3>
<a name="o_acquire">Acquire</a>
</h3>
<div>
<p>Acquire provides a barrier of the sort necessary to acquire a lock to access
other memory with normal loads and stores.
<dl>
<dt>Relevant standard</dt>
<dd>This corresponds to the C++0x/C1x <code>memory_order_acquire</code>. It
should also be used for C++0x/C1x <code>memory_order_consume</code>.
<dt>Notes for frontends</dt>
<dd>If you are writing a frontend which uses this directly, use with caution.
Acquire only provides a semantic guarantee when paired with a Release
operation.</dd>
<dt>Notes for optimizers</dt>
<dd>In general, optimizers should treat this like a nothrow call; the
the possible optimizations are usually not interesting.</dd>
<dt>Notes for code generation</dt>
<dd>Architectures with weak memory ordering (essentially everything relevant
today except x86 and SPARC) require some sort of fence to maintain
the Acquire semantics. The precise fences required varies widely by
architecture, but for a simple implementation, most architectures provide
a barrier which is strong enough for everything (<code>dmb</code> on ARM,
<code>sync</code> on PowerPC, etc.). Putting such a fence after the
equivalent Monotonic operation is sufficient to maintain Acquire
semantics for a memory operation.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<h3>
<a name="o_acquire">Release</a>
</h3>
<div>
<p>Release is similar to Acquire, but with a barrier of the sort necessary to
release a lock.
<dl>
<dt>Relevant standard</dt>
<dd>This corresponds to the C++0x/C1x <code>memory_order_release</code>.</dd>
<dt>Notes for frontends</dt>
<dd>If you are writing a frontend which uses this directly, use with caution.
Release only provides a semantic guarantee when paired with a Acquire
operation.</dd>
<dt>Notes for optimizers</dt>
<dd>In general, optimizers should treat this like a nothrow call; the
the possible optimizations are usually not interesting.</dd>
<dt>Notes for code generation</dt>
<dd>Similarly to Acquire, a fence after the relevant operation is usually
sufficient; see the section on Acquire. Note that a store-store fence
is not sufficient to implement Release semantics; store-store fences
are generally not exposed to IR because they are extremely difficult to
use correctly.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<h3>
<a name="o_acqrel">AcquireRelease</a>
</h3>
<div>
<p>AcquireRelease (<code>acq_rel</code> in IR) provides both an Acquire and a
Release barrier (for fences and operations which both read and write memory).
<dl>
<dt>Relevant standard</dt>
<dd>This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.
<dt>Notes for frontends</dt>
<dd>If you are writing a frontend which uses this directly, use with caution.
Acquire only provides a semantic guarantee when paired with a Release
operation, and vice versa.</dd>
<dt>Notes for optimizers</dt>
<dd>In general, optimizers should treat this like a nothrow call; the
the possible optimizations are usually not interesting.</dd>
<dt>Notes for code generation</dt>
<dd>This operation has Acquire and Release semantics; see the sections on
Acquire and Release.</p>
</dl>
</div>
<!-- ======================================================================= -->
<h3>
<a name="o_seqcst">SequentiallyConsistent</a>
</h3>
<div>
<p>SequentiallyConsistent (<code>seq_cst</code> in IR) provides Acquire and/or
Release semantics, and in addition guarantees a total ordering exists with
all other SequentiallyConsistent operations.
<dl>
<dt>Relevant standard</dt>
<dd>This corresponds to the C++0x/C1x <code>memory_order_seq_cst</code>,
Java volatile, and the gcc-compatible <code>__sync_*</code> builtins
which do not specify otherwise.
<dt>Notes for frontends</dt>
<dd>If a frontend is exposing atomic operations, these are much easier to
reason about for the programmer than other kinds of operations, and using
them is generally a practical performance tradeoff.</dd>
<dt>Notes for optimizers</dt>
<dd>In general, optimizers should treat this like a nothrow call; the
the possible optimizations are usually not interesting.</dd>
<dt>Notes for code generation</dt>
<dd>SequentiallyConsistent operations generally require the strongest
barriers supported by the architecture.</dd>
</dl>
</div>
</div>
<!-- *********************************************************************** -->
<h2>
<a name="iropt">Atomics and IR optimization</a>
@ -257,6 +423,15 @@ instructions has been clarified in the IR.</p>
handles anything marked volatile very conservatively. This should get
fixed at some point.</p>
<p>Common architectures have some way of representing at least a pointer-sized
lock-free <code>cmpxchg</code>; such an operation can be used to implement
all the other atomic operations which can be represented in IR up to that
size. Backends are expected to implement all those operations, but not
operations which cannot be implemented in a lock-free manner. It is
expected that backends will give an error when given an operation which
cannot be implemented. (The LLVM code generator is not very helpful here
at the moment, but hopefully that will change.)</p>
<p>The implementation of atomics on LL/SC architectures (like ARM) is currently
a bit of a mess; there is a lot of copy-pasted code across targets, and
the representation is relatively unsuited to optimization (it would be nice
@ -278,8 +453,11 @@ instructions has been clarified in the IR.</p>
<p>On ARM, MIPS, and many other RISC architectures, Acquire, Release, and
SequentiallyConsistent semantics require barrier instructions
for every such operation. Loads and stores generate normal instructions.
<code>atomicrmw</code> and <code>cmpxchg</code> generate LL/SC loops.</p>
<code>cmpxchg</code> and <code>atomicrmw</code> can be represented using
a loop with LL/SC-style instructions which take some sort of exclusive
lock on a cache line (<code>LDREX</code> and <code>STREX</code> on
ARM, etc.). At the moment, the IR does not provide any way to represent a
weak <code>cmpxchg</code> which would not require a loop.</p>
</div>
<!-- *********************************************************************** -->