Add new Pass infrastructure and some examples

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@836 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-10-15 17:31:51 +00:00
parent 3524fc2197
commit 1bffea0341
6 changed files with 476 additions and 0 deletions

View File

@ -0,0 +1,39 @@
//===- llvm/Transforms/LowerAllocations.h - Remove Malloc & Free -*- C++ -*--=//
//
// This file defines the interface to a pass that lowers malloc and free
// instructions to calls to %malloc & %free functions. This transformation is
// a target dependant tranformation because we depend on the size of data types
// and alignment constraints.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_LOWERALLOCATIONS_H
#define LLVM_TRANSFORMS_LOWERALLOCATIONS_H
#include "llvm/Transforms/Pass.h"
class TargetData;
class LowerAllocations : public ConcretePass<LowerAllocations> {
Method *MallocMeth; // Methods in the module we are processing
Method *FreeMeth; // Initialized by doPassInitializationVirt
const TargetData &DataLayout;
public:
inline LowerAllocations(const TargetData &TD) : DataLayout(TD) {
MallocMeth = FreeMeth = 0;
}
// doPassInitialization - For the lower allocations pass, this ensures that a
// module contains a declaration for a malloc and a free function.
//
// This function is always successful.
//
bool doPassInitializationVirt(Module *M);
// doPerMethodWork - This method does the actual work of converting
// instructions over, assuming that the pass has already been initialized.
//
bool doPerMethodWorkVirt(Method *M);
};
#endif

View File

@ -0,0 +1,20 @@
//===- llvm/Transforms/HoistPHIConstants.h - Normalize PHI nodes -*- C++ -*--=//
//
// HoistPHIConstants - Remove literal constants that are arguments of PHI nodes
// by inserting cast instructions in the preceeding basic blocks, and changing
// constant references into references of the casted value.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_HOISTPHICONSTANTS_H
#define LLVM_TRANSFORMS_HOISTPHICONSTANTS_H
#include "llvm/Transforms/Pass.h"
struct HoistPHIConstants : public StatelessPass<HoistPHIConstants> {
// doPerMethodWork - This method does the work. Always successful.
//
static bool doPerMethodWork(Method *M);
};
#endif

View File

@ -0,0 +1,200 @@
//===- llvm/Transforms/Pass.h - Base class for XForm Passes ------*- C++ -*--=//
//
// This file defines a marker class that indicates that a specified class is a
// transformation pass implementation.
//
// Pass's are designed this way so that it is possible to apply N passes to a
// module, by first doing N Pass specific initializations for the module, then
// looping over all of the methods in the module, doing method specific work
// N times for each method. Like this:
//
// for_each(Passes.begin(), Passes.end(), doPassInitialization(Module));
// for_each(Method *M <- Module->begin(), Module->end())
// for_each(Passes.begin(), Passes.end(), doPerMethodWork(M));
//
// The other way to do things is like this:
// for_each(Pass *P <- Passes.begin(), Passes.end()) {
// Passes->doPassInitialization(Module)
// for_each(Module->begin(), Module->end(), P->doPerMethodWork);
// }
//
// But this can cause thrashing and poor cache performance, so we don't do it
// that way.
//
// Because a transformation does not see all methods consecutively, it should
// be careful about the state that it maintains... another pass may modify a
// method between two invokacations of doPerMethodWork.
//
// Also, implementations of doMethodWork should not remove any methods from the
// module.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_PASS_H
#define LLVM_TRANSFORMS_PASS_H
#include "llvm/Module.h"
#include "llvm/Method.h"
//===----------------------------------------------------------------------===//
// Pass interface - Implemented by all 'passes'.
//
struct Pass {
//===--------------------------------------------------------------------===//
// The externally useful entry points
//
// runAllPasses - Run a bunch of passes on the specified module, efficiently.
static bool runAllPasses(Module *M, vector<Pass*> &Passes) {
for (unsigned i = 0; i < Passes.size(); ++i)
if (Passes[i]->doPassInitializationVirt(M)) return true;
// Loop over all of the methods, applying all of the passes to them
for (Module::iterator I = M->begin(); I != M->end(); ++I)
for (unsigned i = 0; i < Passes.size(); ++i)
if (Passes[i]->doPerMethodWorkVirt(*I)) return true;
return false;
}
// runAllPassesAndFree - Run a bunch of passes on the specified module,
// efficiently. When done, delete all of the passes.
//
static bool runAllPassesAndFree(Module *M, vector<Pass*> &Passes) {
// First run all of the passes
bool Result = runAllPasses(M, Passes);
// Free all of the passes.
for (unsigned i = 0; i < Passes.size(); ++i)
delete Passes[i];
return Result;
}
// run(Module*) - Run this pass on a module and all of the methods contained
// within it. Returns false on success.
//
bool run(Module *M) {
if (doPassInitializationVirt(M)) return true;
// Loop over methods in the module. doPerMethodWork could add a method to
// the Module, so we have to keep checking for end of method list condition.
//
for (Module::iterator I = M->begin(); I != M->end(); ++I)
if (doPerMethodWorkVirt(*I)) return true;
return false;
}
// run(Method*) - Run this pass on a module and one specific method. Returns
// false on success.
//
bool run(Method *M) {
if (doPassInitializationVirt(M->getParent())) return true;
return doPerMethodWorkVirt(M);
}
//===--------------------------------------------------------------------===//
// Functions to be implemented by subclasses
//
// Destructor - Virtual so we can be subclassed
inline virtual ~Pass() {}
// doPassInitializationVirt - Virtual method overridden by subclasses to do
// any neccesary per-module initialization. Returns false on success.
//
virtual bool doPassInitializationVirt(Module *M) = 0;
// doPerMethodWorkVirt - Virtual method overriden by subclasses to do the
// per-method processing of the pass. Returns false on success.
//
virtual bool doPerMethodWorkVirt(Method *M) = 0;
};
//===----------------------------------------------------------------------===//
// ConcretePass<t> class - This is used by implementations of passes to fill in
// boiler plate code. SubClass should be a concrete class that is derived from
// ConcretePass.
//
// Deriving from this class is good because if new methods are added in the
// future, code for your pass won't have to change to stub out the unused
// functionality.
//
template<class SubClass>
struct ConcretePass : public Pass {
// doPassInitializationVirt - Default to success.
virtual bool doPassInitializationVirt(Module *M) { return false; }
// doPerMethodWorkVirt - Default to success.
virtual bool doPerMethodWorkVirt(Method *M) { return false; }
};
//===----------------------------------------------------------------------===//
// StatelessPass<t> class - This is used by implementations of passes to fill in
// boiler plate code. Subclassing this class indicates that a class has no
// state to keep around, so it's safe to invoke static versions of functions.
// This can be more efficient that using virtual function dispatch all of the
// time.
//
// SubClass should be a concrete class that is derived from StatelessPass.
//
template<class SubClass>
struct StatelessPass : public ConcretePass<SubClass> {
//===--------------------------------------------------------------------===//
// The externally useful entry points - These are specialized to avoid the
// overhead of virtual method invokations if
//
// run(Module*) - Run this pass on a module and all of the methods contained
// within it. Returns false on success.
//
static bool run(Module *M) {
if (doPassInitialization(M->getParent())) return true;
// Loop over methods in the module. doPerMethodWork could add a method to
// the Module, so we have to keep checking for end of method list condition.
//
for (Module::iterator I = M->begin(); I != M->end(); ++I)
if (doPerMethodWork(*I)) return true;
return false;
}
// run(Method*) - Run this pass on a module and one specific method. Returns
// false on success.
//
static bool run(Method *M) {
if (doPassInitialization(M->getParent())) return true;
return doPerMethodWork(M);
}
//===--------------------------------------------------------------------===//
// Default static method implementations, these should be defined in SubClass
static bool doPassInitialization(Module *M) { return false; }
static bool doPerMethodWork(Method *M) { return false; }
//===--------------------------------------------------------------------===//
// Virtual method forwarders...
// doPassInitializationVirt - For a StatelessPass, default to implementing in
// terms of the static method.
//
virtual bool doPassInitializationVirt(Module *M) {
return SubClass::doPassInitialization(M);
}
// doPerMethodWorkVirt - For a StatelessPass, default to implementing in
// terms of the static method.
//
virtual bool doPerMethodWorkVirt(Method *M) {
return SubClass::doPerMethodWork(M);
}
};
#endif

View File

@ -0,0 +1,35 @@
//===- llvm/Transforms/PrintModulePass.h - Printing Pass ---------*- C++ -*--=//
//
// This file defines a simple pass to print out methods of a module as they are
// processed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_PRINTMODULE_H
#define LLVM_TRANSFORMS_PRINTMODULE_H
#include "llvm/Transforms/Pass.h"
#include "llvm/Assembly/Writer.h"
class PrintModulePass : public ConcretePass<PrintModulePass> {
string Banner; // String to print before each method
ostream *Out; // ostream to print on
bool DeleteStream; // Delete the ostream in our dtor?
public:
inline PrintModulePass(const string &B, ostream *o = &cout, bool DS = false)
: Banner(B), Out(o), DeleteStream(DS) {}
~PrintModulePass() {
if (DeleteStream) delete Out;
}
// doPerMethodWork - This pass just prints a banner followed by the method as
// it's processed.
//
bool doPerMethodWorkVirt(Method *M) {
(*Out) << Banner << M;
return false;
}
};
#endif

View File

@ -0,0 +1,61 @@
//===- llvm/Transforms/HoistPHIConstants.h - Normalize PHI nodes ------------=//
//
// HoistPHIConstants - Remove literal constants that are arguments of PHI nodes
// by inserting cast instructions in the preceeding basic blocks, and changing
// constant references into references of the casted value.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/HoistPHIConstants.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include <map>
typedef pair<BasicBlock *, Value*> BBConstTy;
typedef map<BBConstTy, CastInst *> CachedCopyMap;
static Value *NormalizePhiOperand(PHINode *PN, Value *CPV,
BasicBlock *Pred, CachedCopyMap &CopyCache) {
// Check if we've already inserted a copy for this constant in Pred
// Note that `copyCache[Pred]' will create an empty vector the first time
//
CachedCopyMap::iterator CCI = CopyCache.find(BBConstTy(Pred, CPV));
if (CCI != CopyCache.end()) return CCI->second;
// Create a copy instruction and add it to the cache...
CastInst *Inst = new CastInst(CPV, CPV->getType());
CopyCache.insert(make_pair(BBConstTy(Pred, CPV), Inst));
// Insert the copy just before the terminator inst of the predecessor BB
assert(Pred->getTerminator() && "Degenerate BB encountered!");
Pred->getInstList().insert(Pred->getInstList().end()-1, Inst);
return Inst;
}
//---------------------------------------------------------------------------
// Entry point for normalizing constant args in PHIs
//---------------------------------------------------------------------------
bool HoistPHIConstants::doPerMethodWork(Method *M) {
CachedCopyMap Cache;
for (Method::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI)
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II) {
Instruction *Inst = *II;
if (!isa<PHINode>(Inst)) break; // All PHIs occur at top of BB!
PHINode *PN = cast<PHINode>(Inst);
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
Value *Op = PN->getIncomingValue(i);
if (isa<ConstPoolVal>(Op))
PN->setIncomingValue(i,
NormalizePhiOperand(PN, Op, PN->getIncomingBlock(i), Cache));
}
}
return false;
}

View File

@ -0,0 +1,121 @@
//===- llvm/Transforms/LowerAllocations.h - Remove Malloc & Free Insts ------=//
//
// This file implements a pass that lowers malloc and free instructions to
// calls to %malloc & %free functions. This transformation is a target
// dependant tranformation because we depend on the size of data types and
// alignment constraints.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/LowerAllocations.h"
#include "llvm/Target/TargetData.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/SymbolTable.h"
// doPassInitialization - For the lower allocations pass, this ensures that a
// module contains a declaration for a malloc and a free function.
//
// This function is always successful.
//
bool LowerAllocations::doPassInitializationVirt(Module *M) {
const MethodType *MallocType =
MethodType::get(PointerType::get(Type::UByteTy),
vector<const Type*>(1, Type::UIntTy), false);
SymbolTable *SymTab = M->getSymbolTableSure();
// Check for a definition of malloc
if (Value *V = SymTab->lookup(PointerType::get(MallocType), "malloc")) {
MallocMeth = cast<Method>(V); // Yup, got it
} else { // Nope, add one
M->getMethodList().push_back(MallocMeth = new Method(MallocType, "malloc"));
}
const MethodType *FreeType =
MethodType::get(Type::VoidTy,
vector<const Type*>(1, PointerType::get(Type::UByteTy)),
false);
// Check for a definition of free
if (Value *V = SymTab->lookup(PointerType::get(FreeType), "free")) {
FreeMeth = cast<Method>(V); // Yup, got it
} else { // Nope, add one
M->getMethodList().push_back(FreeMeth = new Method(FreeType, "free"));
}
return false; // Always successful
}
// doPerMethodWork - This method does the actual work of converting
// instructions over, assuming that the pass has already been initialized.
//
bool LowerAllocations::doPerMethodWorkVirt(Method *M) {
assert(MallocMeth && FreeMeth && M && "Pass not initialized!");
// Loop over all of the instructions, looking for malloc or free instructions
for (Method::iterator BBI = M->begin(), BBE = M->end(); BBI != BBE; ++BBI) {
BasicBlock *BB = *BBI;
for (unsigned i = 0; i < BB->size(); ++i) {
BasicBlock::InstListType &BBIL = BB->getInstList();
if (MallocInst *MI = dyn_cast<MallocInst>(*(BBIL.begin()+i))) {
BBIL.remove(BBIL.begin()+i); // remove the malloc instr...
const Type *AllocTy = cast<PointerType>(MI->getType())->getValueType();
// If the user is allocating an unsized array with a dynamic size arg,
// start by getting the size of one element.
//
if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy))
if (ATy->isUnsized()) AllocTy = ATy->getElementType();
// Get the number of bytes to be allocated for one element of the
// requested type...
unsigned Size = DataLayout.getTypeSize(AllocTy);
// malloc(type) becomes sbyte *malloc(constint)
Value *MallocArg = ConstPoolUInt::get(Type::UIntTy, Size);
if (MI->getNumOperands() && Size == 1) {
MallocArg = MI->getOperand(0); // Operand * 1 = Operand
} else if (MI->getNumOperands()) {
// Multiply it by the array size if neccesary...
MallocArg = BinaryOperator::create(Instruction::Mul,MI->getOperand(0),
MallocArg);
BBIL.insert(BBIL.begin()+i++, cast<Instruction>(MallocArg));
}
// Create the call to Malloc...
CallInst *MCall = new CallInst(MallocMeth,
vector<Value*>(1, MallocArg));
BBIL.insert(BBIL.begin()+i, MCall);
// Create a cast instruction to convert to the right type...
CastInst *MCast = new CastInst(MCall, MI->getType());
BBIL.insert(BBIL.begin()+i+1, MCast);
// Replace all uses of the old malloc inst with the cast inst
MI->replaceAllUsesWith(MCast);
delete MI; // Delete the malloc inst
} else if (FreeInst *FI = dyn_cast<FreeInst>(*(BBIL.begin()+i))) {
BBIL.remove(BB->getInstList().begin()+i);
// Cast the argument to free into a ubyte*...
CastInst *MCast = new CastInst(FI->getOperand(0),
PointerType::get(Type::UByteTy));
BBIL.insert(BBIL.begin()+i, MCast);
// Insert a call to the free function...
CallInst *FCall = new CallInst(FreeMeth,
vector<Value*>(1, MCast));
BBIL.insert(BBIL.begin()+i+1, FCall);
// Delete the old free instruction
delete FI;
}
}
}
return false; // Always successful
}