Checkin of new alias analysis interface:

* Takes into account the size of the memory reference to determine aliasing.
  * Expose mod/ref information in a more consistent way


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5631 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2003-02-26 19:24:47 +00:00
parent bf22c73c9c
commit 1c56b730a6

View File

@@ -2,24 +2,61 @@
// //
// This file defines the generic AliasAnalysis interface, which is used as the // This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and // common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. // implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
// //
// Implementations of this interface must implement the various virtual methods, // Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client // which automatically provides functionality for the entire suite of client
// APIs. // APIs.
// //
// This API represents memory as a (Pointer, Size) pair. The Pointer component
// specifies the base memory address of the region, the Size specifies how large
// of an area is being queried. If Size is 0, two pointers only alias if they
// are exactly equal. If size is greater than zero, but small, the two pointers
// alias if the areas pointed to overlap. If the size is very large (ie, ~0U),
// then the two pointers alias if they may be pointing to components of the same
// memory object. Pointers that point to two completely different objects in
// memory never alias, regardless of the value of the Size component.
//
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
class Value; #include "llvm/Support/CallSite.h"
class CallInst; class LoadInst;
class InvokeInst; class StoreInst;
class BasicBlock; class TargetData;
class Instruction; class AnalysisUsage;
class Pass;
struct AliasAnalysis { class AliasAnalysis {
const TargetData *TD;
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P);
// getAnalysisUsage - All alias analysis implementations should invoke this
// directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
// TargetData is required by the pass.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
AliasAnalysis() : TD(0) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// getTargetData - Every alias analysis implementation depends on the size of
/// data items in the current Target. This provides a uniform way to handle
/// it.
const TargetData &getTargetData() const { return *TD; }
//===--------------------------------------------------------------------===//
/// Alias Queries...
///
/// Alias analysis result - Either we know for sure that it does not alias, we /// Alias analysis result - Either we know for sure that it does not alias, we
/// know for sure it must alias, or we don't know anything: The two pointers /// know for sure it must alias, or we don't know anything: The two pointers
@@ -27,29 +64,72 @@ struct AliasAnalysis {
/// if (AA.alias(P1, P2)) { ... } /// if (AA.alias(P1, P2)) { ... }
/// to check to see if two pointers might alias. /// to check to see if two pointers might alias.
/// ///
enum Result { NoAlias = 0, MayAlias = 1, MustAlias = 2 }; enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
/// alias - The main low level interface to the alias analysis implementation. /// alias - The main low level interface to the alias analysis implementation.
/// Returns a Result indicating whether the two pointers are aliased to each /// Returns a Result indicating whether the two pointers are aliased to each
/// other. This is the interface that must be implemented by specific alias /// other. This is the interface that must be implemented by specific alias
/// analysis implementations. /// analysis implementations.
/// ///
virtual Result alias(const Value *V1, const Value *V2) = 0; virtual AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
return MayAlias;
}
/// canCallModify - Return a Result that indicates whether the specified //===--------------------------------------------------------------------===//
/// function call can modify the memory location pointed to by Ptr. /// Simple mod/ref information...
/// ///
virtual Result canCallModify(const CallInst &CI, const Value *Ptr) = 0;
/// canInvokeModify - Return a Result that indicates whether the specified /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// function invoke can modify the memory location pointed to by Ptr. /// bits which may be or'd together.
/// ///
virtual Result canInvokeModify(const InvokeInst &I, const Value *Ptr) = 0; enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write memory specified by the pointer operand. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
/// getModRefInfo (for call sites) - Return whether information about whether
/// a particular call site modifies or reads the memory specified by the
/// pointer.
///
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
return ModRef;
}
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. This function returns NoModRef if
/// the two calls refer to disjoint memory locations, Ref if they both read
/// some of the same memory, Mod if they both write to some of the same
/// memory, and ModRef if they read and write to the same memory.
///
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
return ModRef;
}
/// Convenience functions...
ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
ModRefResult getModRefInfo(StoreInst*S, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
return getModRefInfo(CallSite(C), P, Size);
}
ModRefResult getModRefInfo(InvokeInst*I, Value *P, unsigned Size) {
return getModRefInfo(CallSite(I), P, Size);
}
ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
switch (I->getOpcode()) {
case Instruction::Load: return getModRefInfo((LoadInst*)I, P, Size);
case Instruction::Store: return getModRefInfo((StoreInst*)I, P, Size);
case Instruction::Call: return getModRefInfo((CallInst*)I, P, Size);
case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
default: return NoModRef;
}
}
/// canBasicBlockModify - Return true if it is possible for execution of the /// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr. /// specified basic block to modify the value pointed to by Ptr.
/// ///
bool canBasicBlockModify(const BasicBlock &BB, const Value *Ptr); bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
/// canInstructionRangeModify - Return true if it is possible for the /// canInstructionRangeModify - Return true if it is possible for the
/// execution of the specified instructions to modify the value pointed to by /// execution of the specified instructions to modify the value pointed to by
@@ -57,9 +137,7 @@ struct AliasAnalysis {
/// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
/// ///
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Value *Ptr); const Value *Ptr, unsigned Size);
virtual ~AliasAnalysis(); // We want to be subclassed
}; };
#endif #endif