Partially revert r210444 due to performance regression

Summary:
Converting outermost zext(a) to sext(a) causes worse code when the
computation of zext(a) could be reused. For example, after converting

... = array[zext(a)]
... = array[zext(a) + 1]

to

... = array[sext(a)]
... = array[zext(a) + 1],

the program computes sext(a), which is actually unnecessary. I added one
test in split-gep-and-gvn.ll to illustrate this scenario.

Also, with r211281 and r211084, we annotate more "nuw" tags to
computation involving CUDA intrinsics such as threadIdx.x. These
annotations help with splitting GEP a lot, rendering the benefit we get
from this reverted optimization only marginal.

Test Plan: make check-all

Reviewers: eliben, meheff

Reviewed By: meheff

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D4542

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213209 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jingyue Wu 2014-07-16 23:25:00 +00:00
parent 07b294a25b
commit 1d56cda023
3 changed files with 60 additions and 86 deletions

View File

@ -272,23 +272,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
/// ///
/// Verified in @i32_add in split-gep.ll /// Verified in @i32_add in split-gep.ll
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
/// For each array index that is in the form of zext(a), convert it to sext(a)
/// if we can prove zext(a) <= max signed value of typeof(a). We prefer
/// sext(a) to zext(a), because in the special case where x + y >= 0 and
/// (x >= 0 or y >= 0), function CanTraceInto can split sext(x + y),
/// while no such case exists for zext(x + y).
///
/// Note that
/// zext(x + y) = zext(x) + zext(y)
/// is wrong, e.g.,
/// zext i32(UINT_MAX + 1) to i64 !=
/// (zext i32 UINT_MAX to i64) + (zext i32 1 to i64)
///
/// Returns true if the module changes.
///
/// Verified in @inbounds_zext_add in split-gep.ll and @sum_of_array3 in
/// split-gep-and-gvn.ll
bool convertInBoundsZExtToSExt(GetElementPtrInst *GEP);
const DataLayout *DL; const DataLayout *DL;
}; };
@ -613,43 +596,6 @@ bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
return Changed; return Changed;
} }
bool
SeparateConstOffsetFromGEP::convertInBoundsZExtToSExt(GetElementPtrInst *GEP) {
if (!GEP->isInBounds())
return false;
// TODO: consider alloca
GlobalVariable *UnderlyingObject =
dyn_cast<GlobalVariable>(GEP->getPointerOperand());
if (UnderlyingObject == nullptr)
return false;
uint64_t ObjectSize =
DL->getTypeAllocSize(UnderlyingObject->getType()->getElementType());
gep_type_iterator GTI = gep_type_begin(*GEP);
bool Changed = false;
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
if (ZExtInst *Extended = dyn_cast<ZExtInst>(*I)) {
unsigned SrcBitWidth =
cast<IntegerType>(Extended->getSrcTy())->getBitWidth();
// For GEP operand zext(a), if a <= max signed value of typeof(a), then
// the sign bit of a is zero and sext(a) = zext(a). Because the GEP is
// in bounds, we know a <= ObjectSize, so the condition can be reduced
// to ObjectSize <= max signed value of typeof(a).
if (ObjectSize <=
APInt::getSignedMaxValue(SrcBitWidth).getZExtValue()) {
*I = new SExtInst(Extended->getOperand(0), Extended->getType(),
Extended->getName(), GEP);
Changed = true;
}
}
}
}
return Changed;
}
int64_t int64_t
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
bool &NeedsExtraction) { bool &NeedsExtraction) {
@ -684,9 +630,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
if (GEP->hasAllConstantIndices()) if (GEP->hasAllConstantIndices())
return false; return false;
bool Changed = false; bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
Changed |= canonicalizeArrayIndicesToPointerSize(GEP);
Changed |= convertInBoundsZExtToSExt(GEP);
bool NeedsExtraction; bool NeedsExtraction;
int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);

View File

@ -99,8 +99,17 @@ define void @sum_of_array2(i32 %x, i32 %y, float* nocapture %output) {
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
; Similar to @sum_of_array3, but extends array indices using zext instead of
; sext. e.g., array[zext(x + 1)][zext(y + 1)]. ; This function loads
; array[zext(x)][zext(y)]
; array[zext(x)][zext(y +nuw 1)]
; array[zext(x +nuw 1)][zext(y)]
; array[zext(x +nuw 1)][zext(y +nuw 1)].
;
; This function is similar to @sum_of_array, but it
; 1) extends array indices using zext instead of sext;
; 2) annotates the addition with "nuw"; otherwise, zext(x + 1) => zext(x) + 1
; may be invalid.
define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) { define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
.preheader: .preheader:
%0 = zext i32 %y to i64 %0 = zext i32 %y to i64
@ -109,13 +118,13 @@ define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
%3 = addrspacecast float addrspace(3)* %2 to float* %3 = addrspacecast float addrspace(3)* %2 to float*
%4 = load float* %3, align 4 %4 = load float* %3, align 4
%5 = fadd float %4, 0.000000e+00 %5 = fadd float %4, 0.000000e+00
%6 = add i32 %y, 1 %6 = add nuw i32 %y, 1
%7 = zext i32 %6 to i64 %7 = zext i32 %6 to i64
%8 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7 %8 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
%9 = addrspacecast float addrspace(3)* %8 to float* %9 = addrspacecast float addrspace(3)* %8 to float*
%10 = load float* %9, align 4 %10 = load float* %9, align 4
%11 = fadd float %5, %10 %11 = fadd float %5, %10
%12 = add i32 %x, 1 %12 = add nuw i32 %x, 1
%13 = zext i32 %12 to i64 %13 = zext i32 %12 to i64
%14 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0 %14 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
%15 = addrspacecast float addrspace(3)* %14 to float* %15 = addrspacecast float addrspace(3)* %14 to float*
@ -139,3 +148,49 @@ define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33 ; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33
; This function loads
; array[zext(x)][zext(y)]
; array[zext(x)][zext(y)]
; array[zext(x) + 1][zext(y) + 1]
; array[zext(x) + 1][zext(y) + 1].
;
; We expect the generated code to reuse the computation of
; &array[zext(x)][zext(y)]. See the expected IR and PTX for details.
define void @sum_of_array4(i32 %x, i32 %y, float* nocapture %output) {
.preheader:
%0 = zext i32 %y to i64
%1 = zext i32 %x to i64
%2 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
%3 = addrspacecast float addrspace(3)* %2 to float*
%4 = load float* %3, align 4
%5 = fadd float %4, 0.000000e+00
%6 = add i64 %0, 1
%7 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
%8 = addrspacecast float addrspace(3)* %7 to float*
%9 = load float* %8, align 4
%10 = fadd float %5, %9
%11 = add i64 %1, 1
%12 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
%13 = addrspacecast float addrspace(3)* %12 to float*
%14 = load float* %13, align 4
%15 = fadd float %10, %14
%16 = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
%17 = addrspacecast float addrspace(3)* %16 to float*
%18 = load float* %17, align 4
%19 = fadd float %15, %18
store float %19, float* %output, align 4
ret void
}
; PTX-LABEL: sum_of_array4(
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
; IR-LABEL: @sum_of_array4(
; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 1
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 32
; IR: getelementptr float addrspace(3)* [[BASE_PTR]], i64 33

View File

@ -234,28 +234,3 @@ entry:
; CHECK-LABEL: @and( ; CHECK-LABEL: @and(
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array ; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array
; CHECK-NOT: getelementptr ; CHECK-NOT: getelementptr
; if zext(a + b) <= max signed value of typeof(a + b), then we can prove
; a + b >= 0 and zext(a + b) == sext(a + b). If we can prove further a or b is
; non-negative, we have zext(a + b) == sext(a) + sext(b).
define float* @inbounds_zext_add(i32 %i, i4 %j) {
entry:
%0 = add i32 %i, 1
%1 = zext i32 %0 to i64
; Because zext(i + 1) is an index of an in bounds GEP based on
; float_2d_array, zext(i + 1) <= sizeof(float_2d_array) = 4096.
; Furthermore, since typeof(i + 1) is i32 and 4096 < 2^31, we are sure the
; sign bit of i + 1 is 0. This implies zext(i + 1) = sext(i + 1).
%2 = add i4 %j, 2
%3 = zext i4 %2 to i64
; In this case, typeof(j + 2) is i4, so zext(j + 2) <= 4096 does not imply
; the sign bit of j + 2 is 0.
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %1, i64 %3
ret float* %p
}
; CHECK-LABEL: @inbounds_zext_add(
; CHECK-NOT: add
; CHECK: add i4 %j, 2
; CHECK: sext
; CHECK: getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
; CHECK: getelementptr float* %{{[a-zA-Z0-9]+}}, i64 32