[C++11] Now that the users are gone, rip out the duplicated traits from type_traits.h

Simplify the remaining ones a bit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203249 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2014-03-07 15:54:23 +00:00
parent 8eccde8617
commit 1dd31112ff
2 changed files with 24 additions and 175 deletions

View File

@ -7,18 +7,14 @@
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// This file provides a template class that determines if a type is a class or // This file provides useful additions to the standard type_traits library.
// not. The basic mechanism, based on using the pointer to member function of
// a zero argument to a function was "boosted" from the boost type_traits
// library. See http://www.boost.org/ for all the gory details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_TYPE_TRAITS_H #ifndef LLVM_SUPPORT_TYPE_TRAITS_H
#define LLVM_SUPPORT_TYPE_TRAITS_H #define LLVM_SUPPORT_TYPE_TRAITS_H
#include "llvm/Support/DataTypes.h" #include <type_traits>
#include <cstddef>
#include <utility> #include <utility>
#ifndef __has_feature #ifndef __has_feature
@ -26,40 +22,8 @@
#define __has_feature(x) 0 #define __has_feature(x) 0
#endif #endif
// This is actually the conforming implementation which works with abstract
// classes. However, enough compilers have trouble with it that most will use
// the one in boost/type_traits/object_traits.hpp. This implementation actually
// works with VC7.0, but other interactions seem to fail when we use it.
namespace llvm { namespace llvm {
namespace dont_use
{
// These two functions should never be used. They are helpers to
// the is_class template below. They cannot be located inside
// is_class because doing so causes at least GCC to think that
// the value of the "value" enumerator is not constant. Placing
// them out here (for some strange reason) allows the sizeof
// operator against them to magically be constant. This is
// important to make the is_class<T>::value idiom zero cost. it
// evaluates to a constant 1 or 0 depending on whether the
// parameter T is a class or not (respectively).
template<typename T> char is_class_helper(void(T::*)());
template<typename T> double is_class_helper(...);
}
template <typename T>
struct is_class
{
// is_class<> metafunction due to Paul Mensonides (leavings@attbi.com). For
// more details:
// http://groups.google.com/groups?hl=en&selm=000001c1cc83%24e154d5e0%247772e50c%40c161550a&rnum=1
public:
static const bool value =
sizeof(char) == sizeof(dont_use::is_class_helper<T>(0));
};
/// isPodLike - This is a type trait that is used to determine whether a given /// isPodLike - This is a type trait that is used to determine whether a given
/// type can be copied around with memcpy instead of running ctors etc. /// type can be copied around with memcpy instead of running ctors etc.
template <typename T> template <typename T>
@ -71,7 +35,7 @@ struct isPodLike {
#else #else
// If we don't know anything else, we can (at least) assume that all non-class // If we don't know anything else, we can (at least) assume that all non-class
// types are PODs. // types are PODs.
static const bool value = !is_class<T>::value; static const bool value = !std::is_class<T>::value;
#endif #endif
}; };
@ -81,160 +45,44 @@ struct isPodLike<std::pair<T, U> > {
static const bool value = isPodLike<T>::value && isPodLike<U>::value; static const bool value = isPodLike<T>::value && isPodLike<U>::value;
}; };
template <class T, T v>
struct integral_constant {
typedef T value_type;
static const value_type value = v;
typedef integral_constant<T,v> type;
operator value_type() { return value; }
};
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
/// \brief Metafunction that determines whether the two given types are
/// equivalent.
template<typename T, typename U> struct is_same : public false_type {};
template<typename T> struct is_same<T, T> : public true_type {};
/// \brief Metafunction that removes const qualification from a type.
template <typename T> struct remove_const { typedef T type; };
template <typename T> struct remove_const<const T> { typedef T type; };
/// \brief Metafunction that removes volatile qualification from a type.
template <typename T> struct remove_volatile { typedef T type; };
template <typename T> struct remove_volatile<volatile T> { typedef T type; };
/// \brief Metafunction that removes both const and volatile qualification from
/// a type.
template <typename T> struct remove_cv {
typedef typename remove_const<typename remove_volatile<T>::type>::type type;
};
/// \brief Helper to implement is_integral metafunction.
template <typename T> struct is_integral_impl : false_type {};
template <> struct is_integral_impl< bool> : true_type {};
template <> struct is_integral_impl< char> : true_type {};
template <> struct is_integral_impl< signed char> : true_type {};
template <> struct is_integral_impl<unsigned char> : true_type {};
template <> struct is_integral_impl< wchar_t> : true_type {};
template <> struct is_integral_impl< short> : true_type {};
template <> struct is_integral_impl<unsigned short> : true_type {};
template <> struct is_integral_impl< int> : true_type {};
template <> struct is_integral_impl<unsigned int> : true_type {};
template <> struct is_integral_impl< long> : true_type {};
template <> struct is_integral_impl<unsigned long> : true_type {};
template <> struct is_integral_impl< long long> : true_type {};
template <> struct is_integral_impl<unsigned long long> : true_type {};
/// \brief Metafunction that determines whether the given type is an integral
/// type.
template <typename T>
struct is_integral : is_integral_impl<T> {};
/// \brief Metafunction to remove reference from a type.
template <typename T> struct remove_reference { typedef T type; };
template <typename T> struct remove_reference<T&> { typedef T type; };
/// \brief Metafunction that determines whether the given type is a pointer
/// type.
template <typename T> struct is_pointer : false_type {};
template <typename T> struct is_pointer<T*> : true_type {};
template <typename T> struct is_pointer<T* const> : true_type {};
template <typename T> struct is_pointer<T* volatile> : true_type {};
template <typename T> struct is_pointer<T* const volatile> : true_type {};
/// \brief Metafunction that determines wheather the given type is a reference.
template <typename T> struct is_reference : false_type {};
template <typename T> struct is_reference<T&> : true_type {};
/// \brief Metafunction that determines whether the given type is either an /// \brief Metafunction that determines whether the given type is either an
/// integral type or an enumeration type. /// integral type or an enumeration type.
/// ///
/// Note that this accepts potentially more integral types than we whitelist /// Note that this accepts potentially more integral types than is_integral
/// above for is_integral because it is based on merely being convertible /// because it is based on merely being convertible implicitly to an integral
/// implicitly to an integral type. /// type.
template <typename T> class is_integral_or_enum { template <typename T> class is_integral_or_enum {
// Provide an overload which can be called with anything implicitly typedef typename std::remove_reference<T>::type UnderlyingT;
// convertible to an unsigned long long. This should catch integer types and
// enumeration types at least. We blacklist classes with conversion operators
// below.
static double check_int_convertible(unsigned long long);
static char check_int_convertible(...);
typedef typename remove_reference<T>::type UnderlyingT;
static UnderlyingT &nonce_instance;
public: public:
static const bool static const bool value =
value = (!is_class<UnderlyingT>::value && !is_pointer<UnderlyingT>::value && !std::is_class<UnderlyingT>::value && // Filter conversion operators.
!is_same<UnderlyingT, float>::value && !std::is_pointer<UnderlyingT>::value &&
!is_same<UnderlyingT, double>::value && !std::is_floating_point<UnderlyingT>::value &&
sizeof(char) != sizeof(check_int_convertible(nonce_instance))); std::is_convertible<UnderlyingT, unsigned long long>::value;
}; };
// enable_if_c - Enable/disable a template based on a metafunction /// \brief If T is a pointer, just return it. If it is not, return T&.
template<bool Cond, typename T = void>
struct enable_if_c {
typedef T type;
};
template<typename T> struct enable_if_c<false, T> { };
// enable_if - Enable/disable a template based on a metafunction
template<typename Cond, typename T = void>
struct enable_if : public enable_if_c<Cond::value, T> { };
namespace dont_use {
template<typename Base> char base_of_helper(const volatile Base*);
template<typename Base> double base_of_helper(...);
}
/// is_base_of - Metafunction to determine whether one type is a base class of
/// (or identical to) another type.
template<typename Base, typename Derived>
struct is_base_of {
static const bool value
= is_class<Base>::value && is_class<Derived>::value &&
sizeof(char) == sizeof(dont_use::base_of_helper<Base>((Derived*)0));
};
// remove_pointer - Metafunction to turn Foo* into Foo. Defined in
// C++0x [meta.trans.ptr].
template <typename T> struct remove_pointer { typedef T type; };
template <typename T> struct remove_pointer<T*> { typedef T type; };
template <typename T> struct remove_pointer<T*const> { typedef T type; };
template <typename T> struct remove_pointer<T*volatile> { typedef T type; };
template <typename T> struct remove_pointer<T*const volatile> {
typedef T type; };
// If T is a pointer, just return it. If it is not, return T&.
template<typename T, typename Enable = void> template<typename T, typename Enable = void>
struct add_lvalue_reference_if_not_pointer { typedef T &type; }; struct add_lvalue_reference_if_not_pointer { typedef T &type; };
template<typename T> template <typename T>
struct add_lvalue_reference_if_not_pointer<T, struct add_lvalue_reference_if_not_pointer<
typename enable_if<is_pointer<T> >::type> { T, typename std::enable_if<std::is_pointer<T>::value>::type> {
typedef T type; typedef T type;
}; };
// If T is a pointer to X, return a pointer to const X. If it is not, return /// \brief If T is a pointer to X, return a pointer to const X. If it is not,
// const T. /// return const T.
template<typename T, typename Enable = void> template<typename T, typename Enable = void>
struct add_const_past_pointer { typedef const T type; }; struct add_const_past_pointer { typedef const T type; };
template<typename T> template <typename T>
struct add_const_past_pointer<T, typename enable_if<is_pointer<T> >::type> { struct add_const_past_pointer<
typedef const typename remove_pointer<T>::type *type; T, typename std::enable_if<std::is_pointer<T>::value>::type> {
typedef const typename std::remove_pointer<T>::type *type;
}; };
template <bool, typename T, typename F>
struct conditional { typedef T type; };
template <typename T, typename F>
struct conditional<false, T, F> { typedef F type; };
} }
#ifdef LLVM_DEFINED_HAS_FEATURE #ifdef LLVM_DEFINED_HAS_FEATURE

View File

@ -116,7 +116,8 @@ TYPED_TEST(ValueMapTest, OperationsWork) {
template<typename ExpectedType, typename VarType> template<typename ExpectedType, typename VarType>
void CompileAssertHasType(VarType) { void CompileAssertHasType(VarType) {
static_assert((is_same<ExpectedType, VarType>::value), "Not the same type"); static_assert(std::is_same<ExpectedType, VarType>::value,
"Not the same type");
} }
TYPED_TEST(ValueMapTest, Iteration) { TYPED_TEST(ValueMapTest, Iteration) {